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Abstract 15 

Battery management systems require efficient battery prognostics so that failures can be 16 

prevented, and efficient operation guaranteed. In this work, we develop new models based on 17 

neural networks and ordinary differential equations (ODE) to forecast the state of health (SOH) 18 

of batteries and predict their end of life (EOL). Governing differential equations are discovered 19 

using measured capacities and voltage curves. In this context, discoveries and predictions made 20 

with neural ODEs, augmented neural ODEs, predictor-corrector recurrent ODEs are compared 21 

against established recurrent neural network models, including long short-term memory and 22 

gated recurrent units. The ODE models show good performance, achieving errors of 1% in 23 

SOH and 5% in EOL estimation when predicting 30% of the remaining battery’s cycle life. 24 

Variable cycling conditions and a range of prediction horizons are analyzed to evaluate the 25 

models’ characteristics. The results obtained are extremely promising for applications in SOH 26 

and EOL predictions. 27 

Keywords 28 

Lithium-ion batteries, neural ordinary differential equation, deep learning, state of health, end 29 

of life. 30 

31 
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1 Introduction 32 

To enable large-scale decarbonization of our planet, energy storage technologies such as 33 

lithium-ion batteries (LIBs) will need to play an increasingly central role. The growing success 34 

of portable electronics and electric vehicles has been propelled by the realization of LIBs, 35 

which are characterized by high energy density, efficiency, and long lifespans [1, 2]. It is 36 

projected that LIBs will also be used to buffer the intermittent electricity produced by 37 

renewable energy sources through large-scale battery power stations such as Hornsdale Power 38 

Reserve in Southern Australia and Gateway Energy Storage in California, USA [3]. In this 39 

regard, new policy scenarios predict strong commercial penetration of batteries with a utility-40 

scale deployment of 220 GW by 2040 from 4 GW in 2020 [4]. 41 

The optimization of battery performance and lifespan is critical. The state of health (SOH) is a 42 

key piece of information that can be used to predict the battery’s remaining useful life (RUL) 43 

and, therefore, help end-users avoid system failure and manage required maintenance. For 44 

instance, in electric vehicles, accurate prognostics of a battery SOH can prevent failure, thereby 45 

avoiding service interruptions. Battery degradation can be assessed using several methods. 46 

Direct techniques, such as via scanning electron microscopy, transmission electron 47 

microscopy, or Raman spectroscopy can be used to observe the microstructure and chemical 48 

state of batteries directly [5]. However, these direct methods are destructive and applicable to 49 

small-scale prototypes. Electrical methods, including incremental capacity, differential 50 

voltage, and equivalent circuit analysis, have also been used [6-8]. However, those approaches 51 

necessitate ad hoc testing conditions and data processing to achieve high reliability. To 52 

overcome these issues, Kalman and particle filter techniques [9-14] have been developed to 53 

tackle real-time estimation and handle uncertainty in the data. Thanks to the exponential growth 54 

of computational power, the large amounts of data available, and the ease of programming with 55 

scripted languages, data-driven analytics is becoming more widespread. Related data-driven 56 
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models have been shown to score the highest accuracies among all the other techniques in SOH 57 

applications [15-17]. Among the various methods used, support [18-22] and relevance [23] 58 

vector machines, Box-Cox kernel techniques [24], Bayesian and Gaussian processes [25-28], 59 

random forest trees [29, 30], and deep neural networks [31, 32] have been applied to estimate 60 

the battery’s SOH and state of charge. However, most of these techniques have not been 61 

developed specifically for time-dependent problems. Methods particularly valuable for time 62 

series [16, 33-37] include recurrent neural network (RNN), long-short-term memory (LSTM), 63 

and gated recurrent neural networks (GRU) [38-43]. In the field of lithium-ion battery lifetime 64 

prediction, we can find applications of LSTM algorithms [12, 44, 45]. Works from Chemali et 65 

al. and Zhang et al. demonstrated exceptional abilities of LSTM in state of charge and RUL 66 

prediction in batteries [40, 46]. Although previous models showed good performances in short-67 

term predictions, improving the prediction accuracy while limiting computational resources 68 

needed for onboard prognostic is still challenging [47-49]. Furthermore, much of the literature 69 

analyzes ad hoc datasets, making the comparisons among prior works difficult and the results 70 

less general [50]. 71 

The objective of this work is to forecast accurately the battery state of health (SOH) and end 72 

of life (EOL). To do that, we interpreted the battery SOH evolution to be a dynamical system. 73 

In the models developed herein, the battery state 𝒚, discretizing capacities and charge voltage 74 

profiles, evolves following an ordinary differential equation, i.e., 75 

�̇�  = 𝑭(𝒚, 𝑡) (1) 

where 𝑭(𝒚, 𝑡) is a vector-valued function, which we shall assume to be independent of time, 76 

i.e., 𝐹(𝒚, 𝑡) = 𝐹(𝒚). After learning 𝐹(𝒚), SOH(𝒚) is predicted. First, the neural ordinary 77 

differential equation (neural-ODE) approach [51], which parametrizes the function 𝐹(𝒚) 78 

through an infinitely deep neural network, is analyzed. Second, the data is studied using 79 
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augmented neural ODE (ANODE) [52] framework, as this method has been shown to be more 80 

robust and lightweight and better capable of lowering training losses than the neural-ODE [52]. 81 

The (1) was then discretized as an RNN [53], called predictor-corrector RNN (PC-RNN), in 82 

which an explicit correction follows a forward Euler step. 83 

The three ODE-based methods are then compared to the established LSTM and GRU RNNs 84 

[54, 55] on two different battery datasets [56, 57]. The computational results show that the 85 

ODE-based models outperform LSTM and GRU. In particular, ANODE and PC-RNN can 86 

accurately forecast the RUL based on fewer data. Finally, a multi-battery approach is used to 87 

leverage full-cycle data and multiple cells. The results show significant improvements in 88 

performance for early-stage predictions.  89 

2 Dataset 90 

Datasets from Oxford University [57, 58] and NASA [56] were used as they are heterogeneous 91 

and characterized by established discharge patterns and constant-current charge. B1-B8 and 92 

A1-A4 correspond to the Oxford and NASA datasets, respectively, consistent with [25]. It 93 

should be noted that the Oxford and NASA cells have different degradation behavior, as shown 94 

from the capacity versus time plots, see Figures 1(a) and (c). In particular, irregular patterns 95 

are observed on the capacity versus cycle curves in the NASA data (Figure 1(c)) [25]. 96 

Moreover, even within the same dataset, different cells show a different EOL, suggesting 97 

distinct degradation patterns, thereby making predictions challenging.  98 

The features of the dataset included the capacity, 𝑄𝑘, at cycle 𝑘 and the charge voltage profiles. 99 

From 𝑄𝑘 we derived the state-of-health at cycle 𝑘, SOH𝑘, which is defined as [1, 59] 100 

 101 
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SOH𝑘 =
𝑄𝑘

𝑄0
 

 (2) 

where Q𝑘 is capacity at cycle 𝑘 (𝑘 = 0 corresponds to the fresh battery). As various authors 102 

have shown that charge voltage profiles correlate strongly to aging, they were also included in 103 

the state vector 𝒚𝑘 [58, 60]. To convert the voltage charge curves into usable features, we 104 

selected 𝑁V equispaced voltage points, from 3V for Oxford and 3.6 V for NASA datasets to 105 

4.2V for both, and used as features the corresponding normalized charge times (Figure 2(a)). 106 

In turn, this leads to the time/voltage features, 𝑽𝑘. This procedure generates a feature vector 107 

 𝒚𝑘 = (
SOH𝑘

𝑽𝑘
) of dimension 𝑁V + 1 (𝑁𝑉 = 21 for the Oxford and 𝑁V = 19 for the NASA 108 

datasets). Therefore, the state evolution {𝐲𝑘| 𝑘 = 1, … , EOL} can be interpreted as a 109 

multivariate time series or a dynamical system. 110 
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 111 

Figure 1 (a) Capacity curve of batteries from the Oxford dataset (b) Voltage curves at different 112 

time life of the B1 battery (c) Capacity curve from the NASA dataset (d) Voltage curves at 113 

different time life of the A1 battery. 114 

 115 

3 Methods 116 

3.1 Overview 117 

Training was done on the dataset {𝒚1, 𝒚2, … 𝒚𝑁TP
} with 𝑁TP < EOL. To study different 118 

prediction horizons, we trained different portions of the complete degradation data (i.e. 119 

𝑁TP/EOL = 50, 60, … ,90%), three additional cases (i.e. 20, 30, 40 %) were included in the 120 

early prediction analysis (see Multi-battery approach section). The forecasting goal was to 121 

predict EOL and [SOH𝑁TP+1, SOH𝑁TP+2, … , SOHEOL]. First, we considered a single-battery 122 

approach, see Figure 2(b), where, for each battery, we trained the first 𝑁TP points and used later 123 
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datapoints for validation or testing. Validation was performed on a selection of batteries to tune 124 

the models’ hyperparameters (i.e. number of neurons, layers, and number of iterations). Testing 125 

was performed on the remaining batteries.  126 

Two training losses were used. A first loss, ℒ𝐹, defined as 127 

ℒ𝐹 = ∑|�̂�𝑘 − 𝒚𝑘|2

𝑁TP

𝑘=1

 (3) 

where we attributed equal weight to all features, the hat indicates model values. A second loss 128 

ℒ𝐹−norm, attributing equal weight to SOH𝑘 and the combination of time/voltage features, was 129 

defined as 130 

ℒ𝐹−norm = ∑[(SOĤ𝑘 − SOH𝑘)
2

+
1

𝑁V
|�̂�𝑘 − 𝑽𝑘|

2
]

𝑁TP

𝑘=1

 (4) 

where (⋅)̂𝑘 and (⋅)𝑘 indicate model prediction and experimental values.  131 

A similar workflow to that reported in Figure 2(b) was used to study the multi-battery learning 132 

where multiple cells were included in the training, and longer prediction windows were 133 

examined. Only ANODE, GRU, and ℒ𝐹 were considered.  134 

Model performance was benchmarked on the SOH RMSE defined as 135 

RMSESOH =  √ ∑
(SOĤ𝑘 − SOH𝑘)

2

𝑁test

EOL

𝑘=𝑁TP+1

  (5) 

where 𝑁test = EOL − NTP − 1 is the number of testing points. In addition, the error on EOL 136 

prediction given by [48]: 137 
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DEOL =   
EOL̂ − EOL

EOL
 

(6) 

was also tracked. A positive/negative DEOL denotes optimistic/pessimistic predictions. 138 

 139 

Figure 2 (a) Example of extracted features for the Oxford B1 battery:  SOH versus cycle 140 

number (left panel) and charging times versus voltage points at 𝑘 = 10000 − 𝑡ℎ cycle (right 141 

panel). (b) Workflow for the SOH and EOL estimation from batteries data. First, the features 142 

input of our models are extracted, second, the model’s hyperparameters are tuned on the 143 

validation set. Last, considering the optimal hyperparameters, the models are trained and the 144 

prediction is evaluated on the test set. 145 

 146 
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3.2 Models 147 

3.2.1 Neural-ODE 148 

Neural-ODEs are a family of deep neural networks introduced by Chen et al. [51, 61], which 149 

not only extend continuously residual networks and recurrent neural networks, but are also 150 

closely linked to normalizing flows [62]. Within an infinitesimal time step, the neural-ODE 151 

dynamics can be reduced to a continuous ODE problem as in (1), where an infinitely deep 152 

neural network parametrizes the sequence of system states. Therefore, the measured systems 153 

state, 𝒚𝑘, can be computed using an ODE solver starting from an initial value 𝒚𝑘=0 = 𝒚0 by 154 

learning the function 𝐹(𝒚, 𝜽(𝑡)), where  𝜽(𝑡) are the (time-dependent) neural network 155 

parameters. 156 

3.2.2 Augmented neural-ODE (ANODE)  157 

ANODEs have been introduced recently to resolve some of the limitations of neural-ODEs. In 158 

fact, as demonstrated in [52, 63], there are functions that neural-ODEs cannot represent (e.g. 159 

discrete jumps and flows with crossing trajectories). ANODE overcome this problem by 160 

introducing an augmented variable, 𝒂, such that 𝑑/𝑑𝑡 [
𝒚
𝒂

] = 𝐹([
𝒚
𝒂

] , 𝜽(𝑡)) and [
𝒚
𝒂

] (0) = [
𝒚0

0
]. 161 

As shown elsewhere [52, 63, 64], augmenting the solution space allows more complex 162 

functions to be represented and may lower computational cost.  163 

3.2.3 Predictor-corrector RNN (PC-RNN) 164 
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RNNs are attractive given their ability to process sequential data using recursive structures [53, 165 

65]. Here we use a specific version of RNNs, which we use and call PC-RNN.  𝐹(𝒚𝑘 , 𝜽) is 166 

parametrized as a neural network where 𝜽 are the network parameters and Euler forward 167 

differencing is used to obtain a “prediction” �̂�𝑘+1 from 𝒚𝑘, namely,  168 

�̂�𝑘+1 = 𝒚𝑘 + 𝛥𝑡 𝐹(𝒚𝑘, 𝜽) (7) 

Then, the “predicted” �̂�𝑘+1 are used to compute 𝐹(�̂�𝑘+1, 𝜽). In turn the “corrected” 𝒚𝑘+1 is 169 

obtained using 170 

𝒚𝑘+1 = 𝒚𝑘 +
1

2
 𝛥𝑡(𝐹(𝒚𝑘, 𝜽) + 𝐹(�̂�𝑘+1, 𝜽)) (8) 

3.2.4 LSTM and GRU 171 

LSTM was introduced by Hochreiter and Schmidhuber [55, 66] to solve RNNs’ vanishing 172 

gradient issue in long-term dependencies. Like RNNs, in LSTM the past states and the new 173 

information are recursively combined to return outputs. However, in RNN the distant 174 

information cannot persist as time elapses, due to feedback error decay. The more complex 175 

architecture of LSTM provides a solution to this problem by adding to the conventional hidden 176 

state a cell state, 𝑪𝑘. The former state is responsible for maintaining short-term memory, 177 

whereas the latter state preserves long-term memory. Four gates process the information 178 

accordingly. Each LSTM unit is followed by a fully connected layer to give the output at the 179 

next time step 𝑘 + 1. 180 

GRU was introduced by Cho et al. in 2014 [54, 56]. It is considered a variation of LSTM and 181 

has similar architecture. The main differences with LSTM are that (i) in GRU two gates (vs. 182 

the four of LSTM) are used; and (ii) the cell state and hidden state are merged. Few examples 183 

in the literature demonstrate results comparable to and sometimes better than LSTM [42, 46, 184 

67].  185 
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3.3 Implementation 186 

In neural-ODE, two linear layers with tanh activation were used to model 𝐹(𝒚, 𝜽(𝑡)). Dopri5, 187 

the default solver, and the adjoint method [68] were used to compute trajectories and gradients, 188 

respectively. The batch size was set to 1. The reader can refer to [51, 69] for more details. In 189 

ANODE, the network setup was as described in the literature [52]. As for LSTM and GRU, 190 

dropout (p=0.2) was applied to reduce overfitting. A schematic of the model architectures is 191 

provided in Figure 3. All codes were implemented using Pytorch.  192 

 193 

Figure 3 Simplified schematics of neural-ODE, ANODE, and PC-RNN architectures.  194 

 195 

3.4 Hyperparameter optimization 196 

For neural-ODEs, the width of the linear layer was selected among 50, 100, 200, and 500. In 197 

ANODE, the optimal neurons were chosen among 50, 100, 500, and 1000 and the augmented 198 

space dimensions (𝑛𝒂) among 1, 5, and Nv+1. The depth and width of the PC-RNN underlying 199 

neural network were chosen among 1, 2, 4, 6, and 20, 40, 50, 100, 125, 256, respectively. In 200 

LSTM, 250, 500, 1000 neurons in a 1-layer configuration and 50, 100, 250 in a 2-, 4-, and 6-201 

layers network were explored as in [41, 46]. In GRU, 1, 2, 3, 4, and 6 layers of width 50, 100, 202 

150, 200, and 300 were studied according to [67]. The number of iterations was also considered 203 

as a network hyperparameter and tuned against the validation data. Batteries B1, B3, B7, and 204 
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A1, A3, were selected for the hyperparameter tuning; for each one, training and validation were 205 

performed on the first 70% and last 30% of the data, respectively. The optimal (lowest 206 

validation error) hyperparameters were obtained by weighing each battery equally. 207 

 208 

  neural-ODE ANODE PC-RNN LSTM GRU 

  𝓛𝑭 

Oxford 
neurons 100 1000 20 250 300 

layers - 22 (𝑛𝒂) 1 1 1 

NASA 
neurons 50 1000 50 500 200 

layers - 20 (𝑛𝒂) 1 3 3 

  𝓛𝑭−𝐧𝐨𝐫𝐦 

Oxford 
neurons  1000 100 250 300 

layers - 1 (𝑛𝒂) 1 1 6 

NASA 
neurons  1000 40 50 300 

layers - 1 (𝑛𝒂) 4 2 4 

 209 

Table 1 Optimal hyperparameters in the Oxford and NASA experiments with training losses 210 

defined as ℒF and ℒF−norm as in Methods, Overview. 211 

 212 

4 Results  213 

4.1 SOH prediction 214 

4.1.1 Oxford dataset 215 

From the hyperparameter optimization (Table 1), we obtain 1 layer for GRU, LSTM, and PC-216 

RNN and 300, 250, 20, 100, and 1000 neurons in GRU, LSTM, PC-RNN, neural-ODE, and 217 

ANODE, respectively. In ANODE, the optimal augmented space dimension 𝑛𝒂 is 22. The 218 

models were trained and tested on batteries B2, B4-6, and B8. Different prediction horizons 219 
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dependent on the proportion of data used for training (i.e. 𝑁TP/EOL = 50, 60, … ,90%) were 220 

analyzed. The prediction on SOH for the battery B2 at 𝑁TP/EOL = 70% is shown in Figure 4. 221 

We can observe that all models can successfully regress the training data (solid red lines) and 222 

predict the downward degradation trend (red dashed lines). The methods’ accuracy in 223 

predicting SOH is benchmarked using the RMSESOH, whose mean values and standard 224 

deviations are reported in Table 2. Overall, ANODE achieves the best performance, except at 225 

𝑁TP/EOL = 70%, with an average RMSEsSOH lower than 3% for all prediction windows [48]. 226 

PC-RNN performs slightly worse than ANODE, and GRU shows the worst results. As 227 

expected, the model’s accuracy was higher for the shorter prediction horizon, with the only 228 

exception of neural-ODE, which produces the lowest RMSESOH (0.93%) at 70%, see Figure 229 

5(b). 230 

 231 
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% 

training 

data 

neural-

ODE 
ANODE PC-RNN LSTM GRU 

  𝓛𝑭 

O
x
fo

rd
 

RMSESOH

[%] 

50 3.11±2.33 2.59±2.84 2.83±1.68 4.07±0.64 3.92±1.04 

60 1.95±1.84 1.40±1.26 1.41±0.99 2.82±1.59 3.45±0.95 

70 0.93±0.70 1.61±1.44 1.30±0.82 1.64±0.54 2.21±0.47 

80 2.05±1.17 1.05±1.07 1.32±0.46 1.38±0.68 1.53±0.67 

90 3.72±2.31 1.10±1.04 1.20±1.12 1.47±1.06 1.41±1.09 

N
A

S
A

 

RMSESOH 

[%] 

50 5.70±3.52 5.66±5.07 4.93±3.67 4.79±2.00 6.34±4.07 

60 2.51±1.34 11.68±11.41 6.45±1.03 7.89±1.02 6.90±2.27 

70 3.27±0.10 4.70±0.33 6.31±1.19 6.33±1.45 3.56±2.52 

80 4.72±0.78 5.27±0.78 3.68±0.89 6.23±0.43 3.55±1.96 

90 1.83±0.02 1.73±0.58 1.96±0.21 4.17±0.09 2.86±1.50 

  𝓛𝑭−𝐧𝐨𝐫𝐦 

O
x
fo

rd
 

RMSESOH 

[%] 

50 2.37±0.71 2.02±1.60 1.74±0.80 4.73±0.65 3.99±0.57 

60 1.72±1.54 1.64±1.03 1.71±0.09 3.05±1.58 3.51±1.33 

70 1.13±0.71 1.77±1.52 1.05±0.53 2.01±0.78 1.66±0.71 

80 1.29±0.88 1.29±0.52 0.84±0.49 1.43±0.74 1.73±0.74 

90 1.46±0.44 1.17±1.21 1.08±1.12 1.40±1.13 1.79±1.25 

N
A

S
A

 

RMSESOH 

[%] 

50 4.49±0.59 10.88±11.85 9.54±9.96 4.06±0.58 7.57±1.57 

60 1.76±0.75 10.19±10.12 5.05±0.55 8.35±0.72 6.44±3.82 

70 3.97±1.07 5.36±4.17 3.81±1.75 5.88±0.24 4.56±2.36 

80 2.25±0.97 3.39±2.24 3.65±3.51 4.31±0.26 3.12±0.75 

90 1.85±0.47 4.59±3.81 1.87±1.49 4.97±0.40 2.39±1.70 

 232 

Table 2 RMSESOH mean values and standard deviations on batteries B2, B4-B6, and B8 for 233 

Oxford and A2, A4 for NASA, obtained training each algorithm with the losses ℒ𝐹 and 234 

ℒ𝐹−norm (see Section Methods, Overview for details), respectively, at different training 235 

portions of data. The best results are in bold font. 236 

 237 
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 238 

Figure 4 Examples of experimental and predicted SOH for the B2 Oxford battery with 70% as 239 

a function of the portion of data used for training. 240 

 241 

         (a)          (b)  

   

        (c)          (d)         (e) 
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Figure 5 (a) Examples of training and testing points on the capacity curve of the B2 battery. 242 

(b) Evolution of the test error on the SOH prediction, averaged on the batteries B2, B4-6, and 243 

B8, with different portions of data used for training (50%, 60%, 70%, 80%, 90%). (c) Examples 244 

of training and testing points on the capacity curve on the A2 battery. (d) Evolution of the test 245 

error on the SOH prediction, averaged on the batteries A2 and A4, with different potions of 246 

data used for training (50%, 60%, 70%, 80%, 90%).  247 

 248 

4.1.2 NASA dataset 249 

The optimal hyperparameters (Table 1) are identified to be 3 layers in GRU, 1 layer in LSTM 250 

and PC-RNN, and 200, 500, 50, 50, 1000 neurons in GRU, LSTM, PC-RNN, neural-ODE, and 251 

ANODE, respectively. In ANODE 𝑛𝒂 = 20. The prediction on SOH for the battery A2 at 252 

𝑁TP/EOL = 70% is shown in Figure 6. The RMSESOH’s of batteries A2 and A4 are reported 253 

in Table 2. The models’ prediction accuracy drops compared to the Oxford results. For 254 

instance, at 𝑁TP/EOL =70%, the average RMSESOH increases to 6.33% (LSTM), 7.48% 255 

(GRU), 4.70% (ANODE), 3.27% (PC-RNN) and 6.31% (neural-ODE). The larger errors can 256 
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be attributed to the irregular patterns characteristic of the NASA degradation dataset (see 257 

paragraph Dataset). At 𝑁TP/EOL =60%, ANODE fails to reproduce the downward trend 258 

typical of battery degradation, leading to the highest average RMSEs (larger than 10%), see 259 

Figure 5(d). Despite fluctuations and the inability to capture short-term jumps, neural-ODE 260 

and PC-RNN yield the best results, see Figure 5(d). Conversely, while LSTM and GRU can fit 261 

short-term patterns, they have poorer prediction ability. Finally, we believe that the single-262 

battery approach is not only meaningful in one-shot predictions (when there is no data to 263 

pretrain the model) but also can highlight the potential of each model. In this context, PC-RNN, 264 

neural-ODE, and ANODE models appear to be more promising.  265 

 266 

 267 

Figure 6 Examples of experimental and predicted SOH for the A2 NASA battery with 70% as 268 

a portion of data used for training. 269 

 270 

       (a)         (b)  

  
        (c)         (d)        (e) 
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4.2 EOL prediction 271 

The EOL analysis is based on the same experiments described in the previous sections. The 272 

accuracy of the models with respect to EOL prediction is assessed using the DEOL (see 273 

Equation 6), whose values and confidence intervals are shown in Figure 7. The ODE-based 274 

models show good ability in predicting the EOL in both Oxford and NASA datasets, especially 275 

in case of shorter predictions (i.e. 𝑁TP/EOL = 70, 80, 90%), see Figure 7(a-j). Specifically for 276 

the Oxford datasets, median DEOLs are below 10% in neural-ODE and ANODE. Conversely, 277 

at 50% and 60%, only ANODE maintains good accuracy, see Figure 7(a-e). For the NASA 278 

datasets (Figure 7(f-j)), the best performances are achieved by the neural-ODE model. In short, 279 

ODE-based models underestimate the battery life compared to LSTM and GRU, which is 280 

advantageous for circumstances in which prudence is preferred. 281 
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Figure 7 DEOL in Oxford (a-e) and NASA (f-j) experiments, training losses defined as ℒ𝐹 in 282 

Methods, Overview.    283 

 284 

4.3 Influence of voltage versus capacity features  285 

Since the training losses, ℒ, play a key role in the learning process, we aimed at understanding 286 

how results change with the loss term. Therefore, we defined ℒ𝐹−norm (see Equation 4), where 287 

an identical aggregate weight is assigned to capacity and cumulative time/voltage features. In 288 

the Oxford experiments, the hyperparameter optimization (see Table 1) leads to 1 layer in 289 

LSTM, 6 layers in GRU, 1 layer in PC-RNN, and respectively 250, 300, 100, 100, and 1000 290 

neurons in LSTM, GRU, PC-RNN, neural-ODE, and ANODE. In ANODE 𝑛𝒂 = 1. In the 291 

NASA experiments, the hyperparameter optimization leads to 2 layers in LSTM, 4 layers in 292 

GRU, 4 layers in PC-RNN, and respectively 50, 300, 40, 50, 100 neurons in LSTM, GRU, PC-293 

RNN, neural-ODE, and ANODE. In ANODE 𝑛𝒂 = 1. The RMSESOH are listed in Table 2. The 294 

EOL analysis is reported in Figures 8(a-e) and (f-j), for Oxford and NASA datasets, 295 
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respectively. From the results in Table 2, and comparing the results obtained by using ℒ𝐹, only 296 

a few cases showed marginal improvement (i.e. PC-RNN at 50, 70, 80, and 90% or ANODE 297 

at 50%). Neural-ODE improves slightly for all prediction windows, except at 70%. LSTM and 298 

GRU exhibit small changes. From the DEOL in Figure 8(a-e), we can observe that only PC-299 

RNN shows improvement. Neural-ODE, ANODE, LSTM, and GRU show overall slightly 300 

worst performances. With reference to the NASA results in Table 2, we observe a slight 301 

decrease of RMSESOH in ℒ𝐹−norm relative to ℒ𝐹 for ANODE at 60, and 80%, LSTM at 50, 70, 302 

and 80%, and PC-RNN in all cases except at 50%, neural-ODE at 50, 60, and 80%, and GRU 303 

at 60, 80, and 90%. Overall, the results do not suggest a strong trend. In reference to EOL 304 

analysis, see Figure 8(f-j), neural-ODE, PC-RNN, and ANODE are the most conservative. 305 

Interestingly, for PC-RNN, DEOL is negative in all cases.  306 

 307 
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Figure 8 DEOL in Oxford (a-e) and NASA (f-j) experiments, training losses defined as 308 

ℒ𝐹−norm in Methods, Overview.   309 

 310 

5 Multi-battery approach 311 

We aimed at extending the prognostic to longer prediction horizons, by learning from multiple 312 

degradation patterns and fully aged cells. Thus, we analyze here earlier stages (i.e.  313 

𝑁TP/EOL =20, 30, 40%). For a preliminary study, only ANODE and GRU methods are 314 

benchmarked. In Figure 9(b) and (d) the average RMSESOH is Oxford and NASA experiments, 315 

respectively. From both datasets, we conclude that training multiple batteries significantly 316 

improves the SOH estimation. In the NASA case with GRU, the average RMSESOH drops from 317 

18.08% to 6.55% at 20%, from 14.02% to 3.10% at 30%, and from 8.58% to 4.25% at 40% 318 

(Figure 9(d)). Likewise, with ANODE, the average RMSESOH decreases from 8.36% to 4.91% 319 

at 20%, from 8.62% to 4.48% at 30%, and 5.85% to 5.25% at 40%. The same is valid for GRU 320 

from the Oxford data (Figure 9(b)). Interestingly, ANODE seems to give similar results for 321 
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both single-battery and multi-battery experiments, even for long predictions (average 322 

RMSESOH always below 5.55% in Oxford cases). In general, the multi-battery training brings 323 

major advantages for long predictions but a small degradation for shorter-term horizons, 324 

perhaps due to the bias imposed. Significant improvements are also observed in the EOL 325 

estimation, see Figure 9(e-m), for both ANODE and GRU in the Oxford and NASA 326 

experiments and long-term predictions horizons.  327 

 328 
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Figure 9 (a, c) Example of the multi-battery approach applied to the Oxford and NASA 329 

batteries (b, d). Comparison of averaged RMSESOH between single- and multi-battery 330 

approaches for the Oxford and NASA experiments, with ANODE and GRU. (e-h) DEOL in 331 

Oxford and (j-m) NASA experiments.  332 
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6 Conclusions 333 

We investigated several ODE-based machine learning models for battery SOH and EOL 334 

predictions. These models included the infinitely deep neural networks neural-ODE and 335 

ANODE. We also discretized the underlying ODE as a PC-RNN, where the forward Euler 336 

scheme was followed by an explicit correction. These new models were benchmarked against 337 

established algorithms (i.e. LSTM and GRU). RMSESOH and DEOL were chosen as metrics of 338 

performances on predictions. ODEs-based (neural-ODE and ANODE) and PC-RNN 339 

algorithms outperformed LSTM and GRU in more than 80% of experiments, achieving average 340 

errors of 1% in SOH estimation on batteries at 70% of their total cycle life. The multi-battery 341 

analysis shows high accuracy even for very early predictions (i.e. average error of 4% in SOH 342 

estimation on batteries at 20% of their cycle lifetime. From the DEOL results, we can observe 343 

that PC-RNN, neural-ODE, and ANODE, mostly underestimate battery remaining life. No 344 

specific trends are identified when changing weights of the input features in the training losses. 345 

The accuracy of results varies considerably within the two datasets under study. All the 346 

algorithms showed lower performances when applied to the NASA experiments, which are 347 

characterized by greater stochasticity. Although the presented results are promising, both 348 

neural-ODE and ANODE can be further enhanced to allow more robust solutions [70]. More 349 

broadly, ODE-based codes have high potential in physics-informed network applications [71], 350 

in which physical constraints can be added in the learning algorithm to model complex “grey-351 

box” systems. 352 

 353 

 354 

 355 
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List of acronyms and symbols 356 

Acronym Description 

A1-A4 Batteries from the NASA dataset [56] 

ANODE Augmented neural ordinary differential equations 

B1-B8 Batteries from the Oxford repository [57] 

EOL End-of-life 

GRU Gated recurrent unit  

LSTM Long-short-term memory 

neural-ODE Neural ordinary differential equations 

RNN Recurrent neural network 

PC-RNN Predictor Corrector-RNN 

RUL Remaining useful life 

SOH State of health 
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Variable Description Unit 

DEOL (EOL̂ − EOL)

EOL
 

- 

𝐹(𝒚) Function describing a dynamical system (= 𝐹(𝒚, 𝑡)) - 

𝐹(𝒚, 𝜽(𝑡)) Continuous function describing a dynamical system in 

infinitely deep neural networks 

- 

F(𝒚𝑘, 𝜽) Discretized function describing a dynamical system in 

recurrent neural networks 

- 

ℒ Training losses - 

ℒ𝐹 

∑|�̂�𝑡 − 𝒚𝑡|2

NTP

𝑘=1

 

- 

ℒ𝐹−norm 

∑[(SOĤ𝑘 − SOH𝑘)
2

+
1

Nv
|�̂�𝑘 − 𝑽𝑘|

2
]

NTP

𝑘=1

 

- 

NV Number of time/voltage features - 

Ntest Number of testing points - 

NTP Number of training points - 

RMSESOH Root mean squared error on SOH  

= √ ∑
(SOĤ𝑘 − SOH𝑘)

2

Ntest

EOL

𝑘=NTP+1

 

- 

𝑄𝑘 Capacity of a battery at cycle k Ah 

𝑄0 Capacity of a fresh battery Ah 

SOH𝑘 State of health of a battery at cycle k (= 𝑄𝑘 𝑄0)⁄  - 

𝑘 Cycle number  - 

𝑽𝑘  Vector of charging times versus voltage at cycle k - 

𝒚 State of a continuous dynamical system - 

�̇� Evolution of a battery states with time - 

𝒚0 Initial state of a dynamic system at time zero - 

𝒚𝑘 State of a dynamical system at discrete times 𝑘 (=

(
SOH𝑘

𝑽𝑘
)  

- 

𝜽(𝑡), 𝜽 Networks parameter for the continuous and discretized 

cases 

- 

(∙)̂ Predicted quantities - 

 357 
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