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Electrochemical impedance spectroscopy (EIS) is the established tool for the study of many electrochemical experiments. While
the analysis of EIS data is challenging, this can be assisted by the distribution of relaxation time (DRT) method. However,
obtaining the DRT is difficult as the underlying problem is ill-posed. Inspired by recent advances in image analysis, we develop a
completely new approach, named the deep prior distribution of relaxation time (DP-DRT), for the deconvolution of the EIS to
obtain the DRT. The DP-DRT uses a deep neural network fed with a single random input to deconvolve the DRT and fit the EIS
data. The DP-DRT has the peculiarity of having a number of parameters much larger than the number of observations. Further,
unlike most supervised deep learning models, large datasets are not needed as the DP-DRT is trained against a single available EIS
spectrum. The DP-DRT was successfully tested against both synthetic and real experiments displaying considerable promise and
opportunities for extensions.
© 2020 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. [DOI: 10.1149/1945-7111/
ab631a]

Manuscript submitted October 28, 2019; revised manuscript received December 10, 2019. Published January 9, 2020.

Supplementary material for this article is available online

Electrochemical impedance spectroscopy (EIS) is one of the
experimental techniques most frequently used in electrochemistry.1–4

This technique has several well-known strengths. First, it is relatively
easy to implement. Second, it gives high precision measurements. And
third, it provides data across a wide range of frequencies (from mHz to
MHz).5 For these reasons, this technique has been used in many
diverse applications including batteries,6–10 supercapacitors,11 solar
cells,12 membranes,13 electrolyzers,14 fuel cells,15,16 medicine,17 and
biology.18

In a typical EIS experiment, one takes an electrochemical system
at steady-state and perturbs it with a small sinusoidal voltage (or
current) with a given frequency. By measuring the current (or
voltage) and repeating the same procedure for a given frequency
range, the EIS spectrum can be obtained.1 In short, the EIS technique
measures a voltage-to-current transfer function.5 In spite of the
considerable power of this method, it is difficult to interpret EIS data
because a model is needed.19 A common approach is to fit the EIS
spectra against networks of elementary circuits. However, one
should note that often the circuit networks are just analogs, which
may lack uniqueness and physical meaning.2 Physical models of EIS
data would be ideal, but they are problem-specific and can be
computationally complex.20–24 Furthermore, even if a physical
model is available, there is no guarantee that it can capture the
entire physics of the electrochemical systems at hand. One alter-
native to these conventional methodologies is to use the distribution
of relaxation times (DRT),25–32 which interprets the impedance as
resulting from a distribution of relaxation timescales, i.e.
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where ZDRT is the impedance, f is the frequency, ln 0( )g t  is the
DRT, t is a timescale variable, R¥ is a resistance, and L0 is an
inductance. The DRT model has proven to be very powerful,
and recently this method has been employed to understand the
fundamentals of solid-state ionic systems,33,34 batteries,35–38

supercapacitors,39,40 porous electrochemical reactors,41 dielectrics,42

solar cells,43 and fuel cells.44–47 These applications have highlighted
the promise of DRT models. However, there are still issues.
The primary challenge is the estimation of the function ln( )g t
because the deconvolution problem is ill-posed and depends very

strongly on the experimental errors. To overcome this issue,
Fourier,48,49 evolutionary,39,50,51 Monte Carlo,52 maximum
entropy,53 probability-,54 and regression-based55–61 inversion
methods have been developed. Among these approaches, regularized
regression (RR) is perhaps the most popular and efficient. In general
terms, RR consists of minimizing, with respect to a vector of DRT
values ln , ln , , ln ,M1 2( ( ) ( ) ( ) )g g t g t g t= ¼  a loss function ( )g
defined as
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where Z fnexp ( ) is the experimental impedance measured at the
frequencies fn with n N1, 2, ,= ¼ Z f, nDRT( )g is an approximation
of (1), and P ( )g is some penalty function multiplied by a parameter

.l While RR is relatively well established and can be linked to, and
extended by, Bayesian statistics,62,63 it has the drawback of
depending on the parameter l which biases the estimation of .g 56

In light of this, more extensions of this method are needed. In this
work, we do that by assuming g to be the output of a deep neural
network (DNN). We should point the reader that from (1) to (2) the
notation of ZDRT changed slightly. In (1), we assumed that the
impedance depended on the function ln( )g t and therefore we wrote
Z fln , .DRT( ( ) )g t Instead, in (2) we wrote, consistent with our
earlier works,56,60,62,63 that the impedance of the DRT model
depends on the vector ,g whose entries correspond to the ln( )g t
evaluated at certain collocation timescales mt with m M1, 2, , .= ¼
We will use the notation employed in (2) for the remainder of this
article.

A seminal work by Ulyanov and co-workers on the deep image
prior (DIP) has shown that a DNN with a random input can be
trained against a single data point to perform image denoising,
inpainting, and super-resolution.64 The DIP results are particularly
striking for two reasons. First, they suggest that a DNN architecture
without the pretraining on a large dataset is sufficient for image
enhancement. Second, the DNN used by the DIP is heavily over
parametrized, and, surprisingly, this property does not prevent
improving images.65 In short, the DIP methodology suggests that
the image characteristics (i.e. an image prior) can be directly
encoded in the DNN architecture and a training dataset may not
be needed for specific problems.66

Inspired by the flurry of results following this contribution and, in
particular, its application to inverse problems, we adapted the DIP
philosophy to develop the deep-prior distribution of relaxation times
(DP-DRT).66–72 In short, we did not assume that N , the number ofzE-mail: francesco.ciucci@ust.hk
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frequencies probed experimentally, has the same order of magni-
tude of the number M, the number of collocation points used to
approximate ln .( )g t Instead, we took g to be the output of a DNN
that depends on a rather large number of parameters. This is shown
schematically in Fig. 1, where a DNN depends on (i) a set of
weights and biases, which are written as a parameter vector

Qq Î  with Q N M, ; and (ii) on the chosen activation
functions schematically displayed as colored circles. The key
idea of the newly developed DP-DRT (DPλ-DRT) is to minimize
the loss function (2) with l= 0 ( 00l l > where 0l is the lower
bound of l) with respect to the large parameter vector q rather
than .Mg Î  Using a simple and relatively shallow DNN, we
found that the DP-DRT can perform inversion surprisingly well
even without regularization. The DP-DRT method can capture
overlapping features and discontinuities in the DRT, as well as
significant noise in the experimental data. Furthermore, the DP-
DRT can deconvolve experimental impedances with outcomes
comparable to those of Bayesian methods. These results are
particularly remarkable as we did not optimize the DNN archi-
tecture in this work.

In the remaining sections, we will first outline the DP-DRT
method. Following that, we will show the results obtained with
stochastic experiments whose purpose is to assess the consistency
and robustness of the approach. Then, the deconvolution results from
the DP-DRT of actual real experiments will be discussed and
compared to some reference results. Finally, an outlook for future
research in this exciting field will be provided.

Theory

The deep distribution of relaxation times.—For the DRT deconvo-
lution, we aim at solving an inverse problem. That is, given an experi-
mental data vector, Z Z f Z f Z f, , ,Nexp exp 1 exp 2 exp( ( ) ( ) ( ))= ¼  we want

to determine a latent vector ln , ln , , ln M1 2( ( ) ( ) ( ) )g g t g t g t= ¼ 

such that

Z A A vi 3exp re im( ) [ ]hg= + + +

where Are and Aim are suitable matrices described elsewhere,56 v is a
vector-valued function dependent on the two scalar parameters R¥
and L0 in (1) (i.e. v fR i L1 0= +¥ with 1 1, 1, ,1( )= ¼  and
f f f f, , , N1 2( )= ¼ ), and h denotes the measurement noise. As
already outlined and shown elsewhere,54,56,60,62,63 this linear model
is an approximation of (1). The key contribution of this article is to
take g to be the output of a DNN. g is a vector-valued function of a

random input z which depends on a set of parameters Qq Î  with
Q N M, .

If R¥ and L0 are also outputs of the DNN, i.e., R R , ,( )qz=¥ ¥
L L , ,0 0 ( )qz= and v v , .( )qz= We can use (3) to write the loss
function (2) as

Z A A vi , , 4exp re im 2
2( ) ( ) ( ) ( ) [ ] q g q qz z= - + -

where . 2  is the crm.

Implementation.—For all simulations, we set the f1/t =
(M N= ) and chose a relatively simple DNN, see Fig. 1, consisting
of 4 layers with (i) a random input ;z (ii) an output layer of
dimension N 1,+ N 2,+ or N 3+ depending on the total number
of parameters outputted (i.e., N for g and the remaining for R ,¥ L ,0
and l); and (iii) 2 hidden layers of the width N. The activation
functions were chosen to be non-saturating exponential linear (ELU)
units73 for the first three layers and a softmax ( 5b = ) for the last
layer. The weights and biases were initialized using the Xavier
uniform method74 and to zero, respectively. Furthermore, the
parameters of the network q were optimized using the Adam
algorithm75 with a learning rate of 10−5 and a maximum of
100,000 iterations. Also, early stopping (i.e. the iterations stop
when the absolute value of the variation of the loss is less than 10−8)
was used.76 The input z was chosen randomly from a normal
distribution with zero mean and unitary standard deviation, i.e.

N 0, 1 .( )z ~ The code was implemented with PyTorch77 and all
simulations were run on a GeForce RTX 2060 GPU.

Stochastic experiments.—The stochastic experiments were gen-
erated by corrupting the “exact” impedances with random Gaussian
noise, see (3), with

i 5re im [ ]h h h= +

where kre( )h and kim( )h (k N1, ,= ) are independent normal
random variables of zero mean and variance ,n

2s i.e.
, N 0, .k k nre im

2( ) ( ) ( )h h s~ The chosen frequencies ranged from
10 4- to 104 Hz with 10 points per decade corresponding to N = 81.
As already mentioned above, the DRT was evaluated at f1 ,/t =
implying that M N.= Correspondingly,Q = 20170, 20252, or 20334
if the DNN outputs either R, ,( )g ¥ R L, , 0( )g ¥ or R, , ,( )g l¥ or

R L, , , ,0( )g l¥ respectively. The models used for the Z f ,exact ( ) the
noiseless part of (3), are reported in Table I with the corresponding
parameters listed in Table II.

Figure 1. Schematic depiction of the DP-DRT model, a random scalar input is fed into a DNN, regression is used to obtain the network parameters and estimate
the impedance. The activation functions are indicated with different colors (blue: ELU; orange: softmax).
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Table I. “Exact” impedances and DRTs used in the stochastic experiments.

Model Z f( ) f( )g Notes Reference
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Results

Stochastic experiments.—We conducted stochastic experiments
to validate the methodology against cases where impedance, DRT,
as well as the noise level, are known. First, we will illustrate the DP-
DRT framework. Then, we will show that the method can
deconvolve spectra with overlapping timescales. After that, we
will discuss the inclusion of a regularizing parameter as the output
of the network and analyze the influence of noise level .ns Lastly, we
will demonstrate that the DP-DRT can deconvolve elements with
discontinuous timescale distributions.

An introductory example.—Our investigation started with an
illustrative example. We drew the EIS of a single ZARC element

with 0.1n
1
2s = W as shown in Fig. 2a. Again, the reader can find the

analytical formulas and the parameters used in Table I and Table II,
respectively. Then, we minimized the loss ,( )q see (4). The loss,
which is plotted as a function of the iteration number (iter) in Fig. 2c,
decreases with increasing iteration number and so does the error
defined as

error iter , 6iter exact 2( ) ( ) [ ] g q g= z -

and shown in Fig. 2d. Two vertical dashed lines are plotted in
Fig. 2d and correspond to the early stopping and minimum error or
optimal iteration. We also compared the ln( )g t ’s obtained at those
two iterations, see Fig. 2b. Both early-stopping and optimal values
are capable of closely matching the EIS and the exact DRT, where

Table II. Values of the parameters used in the stochastic experiments.

Parameter
Numerical Value

ZARC 2 ZARCs Havriliak-Negami Piecewise Constant Fractional

R¥ 10 Ω 10 Ω 10 Ω 10 Ω 10 Ω

Rct 50 Ω 50 Ω 50 Ω 50 Ω 50 Ω

0t 1 s 0.1 s 1 s 10 s 1 s
f 0.8 0.8 0.8 0.6
y 0.91t 1 s or 10 s 0.1 s

Figure 2. (a) Nyquist plot of the EIS of a circuit consisting of a resistor in series with a single ZARC element (the synthetic experiment and the DP-DRT
impedance are shown) and (b) corresponding exact and recovered DRTs. (c) Evolution of the loss and (d) error as a function of iteration number; iteration
corresponding to early stopping and minimum error are indicated with the ‘early stop’ and ‘optimal’ labels, respectively.
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only small ridges are present at the base of the ln ,( )g t i.e., for 10−2

s/t  10−1 and 101 s/t  102.

Overlapping timescales.—We then tested if the method can
recover the DRT and EIS of two partially overlapping ZARC
elements. The Nyquist plots of the two EIS spectra can be found in
Figs. 3a and 3c with the parameters from Table II. The DP-DRT
recovers closely the exact EIS. The ln( )g t can be obtained with a
similarly limited discrepancy, as shown in Figs. 3b and 3d.

DPλ-DRT: ridge regression with the DP-DRT.—As proposed by
Ulyanov and co-workers,64 adding a regularizing term to the loss can
enhance images obtained by the DIP. In that regard, Dittmer and
co-workers68 suggested to output l from the network itself, where
the optimal value is obtained by applying L-curve-like criterion. We
attempted to implement a variation of what was proposed in these
two articles and added to the loss an approximation of ln( )g t ’s 2nd
derivative.19,56,62,63 Furthermore, we set l  10−6. We note that
early stopping was still used. As shown in Fig. 4, this procedure
leads only to a slight visual improvement in the recovered g and Z
because the regularizing parameter monotonically decreased to 10−6

with the number of iterations. A similar improvement cannot be seen
if the lower positive bound on l is not present (i.e. l  0) as 0l 
with iter . ¥

Increasing the noise.—One may wonder what happens to the DP-
DRT method if the experimental noise intensifies. We have tested
this by increasing ns by one order of magnitude to 1 .n

1
2s = W This

choice leads to heavily corrupted EIS spectra, as shown in Fig. 5a.
The DP-DRT method can still recover the function ln( )g t well but a

few additional ridges are triggered by the extra noise. It is important
to note that, as shown in Fig. 5b, early stopping corresponds to an
iteration where the error is near its minimum. As the number of
iterations increases, overfitting of Z is expected to occur, leading to
an increased error on the latent .g If we perform the same procedure
with smoothing by using the DPλ-DRT with l  0.1, the recovered
DRT does not show any ridges, see Fig. 5d. However, both the loss
and the error increase as shown in Fig. 5f. We must stress that a large

,l i.e., l  0.1 was chosen in order to emphasize the impact of the
regularizing term.

Repeating the same inversion procedure numerous times can
help assess the robustness of the approach, which was conducted
by performing 1,000 stochastic experiments under the same
hypotheses as above. These experiments were followed by DP-
DRT inversion with early stopping. In Fig. 6a, we plot the
mean DP-DRT and the 5 and 95% confidence bands. It can be
observed that the DRT shape is well captured, albeit with some
scatter, especially near the peak, indicating strong sensitivity to
noise at that location. Further, Fig. 6b plots the probability
distribution function (PDF) of the relative error defined as
rel. error iter , .iter exact 2 exact 2( ) ( ) /   qg z g g= - Consistent with
the data shown in Fig. 6a, Fig. 6c indicates that the relative error
has a broad distribution. For comparison, Fig. 6b shows the
outcome of the DPλ-DRT deconvolution of the same stochastic
experiments with the DRT appearing to be smoother. In contrast
with the outcome of the DP-DRT (without l), the recovered

ln( )g t is insensitive to the noise, showing a narrow distribution
for the relative error, see Fig. 6d. This is consistent with intuition:
because of the large additional penalty of 0.1l  , the bias is
large, but the variance is small.

Figure 3. (a) and (c) Nyquist plot of the EIS of a circuit consisting of a resistor in series with two ZARCs. In (b) and (d) the corresponding exact and recovered
DRTs are shown.
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Deconvolving non-conventional distributions of relaxation
times.—We also tested whether the DP-DRT method can be used
to fit non-conventional elements, whose DRT displays discontinu-
ities and infinite values. For this reason, the EIS was computed for
three circuits corresponding to the Havriliak-Negami (HN),78 piece-
wise constant (PWC),62 and fractal56 models. Then, the ‘exact’
impedance was corrupted with noise according to (4) with

0.1 ,n
1
2s = W see Fig. 7. As shown there, the DP-DRT is able to

recover both Z f( ) and ln( )g t well. This is evident for the HN and
PWC elements, see Figs. 7a–7d. For the fractal element, whose
impedance and DRT are shown in Figs. 7e and 7f, respectively,
oscillations are visible for t  1 s, though the timescale corre-
sponding to the discontinuity appears to be captured well. We
carried out identical stochastic experiments for a higher noise level
by increasing ns to 0.5 .

1
2W As reported in Fig. 8, increasing the

random experimental error does not affect the recovery of the EIS
significantly, but more oscillations appear in the deconvolved

ln .( )g t These simulation results are consistent with the analysis
outlined above.

We also studied the performance of the DP-DRT and DPλ-DRT
models for sharp DRTs by choosing similar synthetic experiments as
those reported in An introductory example where the key differences
are the number of collocation point N= 161 and f either 0.9 or 0.99.
For f = 0.9, DP-DRT and DPλ-DRT models can match the exact
DRT well, Fig. S3. If instead f = 0.99, the timescale resolution is
not sufficient to capture the peak value ( ∼500 W) as shown in Figs.
S3d and S4d. Unsurprisingly, ln( )g t obtained by DPλ-DRT
deconvolution displays a broader peak width than that from the

DP-DRT, see Fig. S5. This difference is due to the penalty used and
can be overcome using lasso regularization.56

Real experiments.—After testing the consistency of the DP-DRT
methodology, we also tested its performance on real experimental
data. First, the EIS measurement performed on a symmetrical SOFC
cell was analyzed, then the DRT from the EIS of a full Li-ion battery
was deconvolved. Depending on whether the regularization terml is
added to the network, the total number of parameters isQ = 24298
or 24388, and Q = 20170 or 20252 for the SOFC and LIB EIS,
respectively.

SOFC cathode.—We first analyzed an EIS spectrum obtained by
testing a symmetrical solid oxide fuel cell (SOFC). For comparison,
the EIS is repeated in the Nyquist plots shown in Figs. 9a–9c. 15%
Samarium-doped ceria was used as the electrolyte and sandwiched
between two electrodes consisting of a mixture of Ag and
Ba0.9La0.1FeO3−δ.

79 The data was collected at 650 °C in a mixture of
N2 and O2 (pO2= 0.21 atm) in the frequency range from 0.1 Hz to
8.56× 104 Hz with 15 points per decade.

We first modeled the experimental data with an equivalent circuit
model (ECM) consisting of a ZARC element plus an inductance.
The parameters estimated by regression are listed in Table III. The
fitted EIS and obtained DRT are shown in Figs. S1a and S1b
(available online at stacks.iop.org/JES/167/026506/mmedia), respec-
tively. The EIS obtained by DP-DRT without regularization is
shown in Fig. 9a. The corresponding ln( )g t is plotted in Fig. 9d,
where, for reference, the DRT of the ECM54,60 is also shown. The

Figure 4. (a) Nyquist plot of the EIS and (b) DRT obtained using the DPλ-DRT method. (c) Evolution of loss and error as a function of iteration with the early
stop value shown. (d) Value of λ as outputted by the DNN vs iteration number.
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DP-DRT method can recover well both the impedance and the DRT
even without regularization. This is shown in Fig. 9g, where the loss
(4) and the discrepancy are defined as

discrepancy iter , 7iter ECM 2( ) ( ) [ ] zg q g= -

are plotted as a function of the iteration number. We further report
the DPλ-DRT results obtained by setting l  10−3, see Figs. 9b, 9e,

and h, and l  10−2, see Figs. 9c, 9f, and 9i. Consistent with
intuition, the small ridges present in the DP-DRT deconvolution
could be smoothed out by including a regularizer. Unsurprisingly,
the larger the lower bound on λ is, the more prominent the loss. We
should note again that no exact DRT is available, and the
discrepancy between DP-DRT and ECM-based distribution serves
only as a reference. To compare the performance of different

Figure 5. (a) and (b) Noisy EIS ( 1n
exp 1

2s = W ) and recovery obtained using the DP-DRT and DPλ-DRT ( 0.1l  ) methods, respectively. (c) and (d) DRT
obtained using DP-DRT and DPλ-DRT ( 0.1l  ) methods, respectively. In (e) and (f), loss and error are shown vs the iteration number; the iteration
corresponding to the early stopping is also indicated.
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models, we also calculated the mean squared error (MSE) defined as

Z ZMSE iter 8exp DRT 2
2( ) [ ] = -

with the results shown in Table SI. The DP-DRT method performed
best with the lowest MSE value. In contrast, the ECM had the largest
MSE among all four models.

LIB experiment.—We also tested the DP-DRT model using
lithium-ion battery (LIB) data taken from our earlier works.54,56,63

An ECM consisting of a series of 3 ZARCs and an inductance was
used to model the experimental EIS.54 The parameters of the ECM
are listed in Table IV, and the corresponding EIS spectra and DRT
are shown in Figs. S2a and S2b, respectively. It is important to note

that, as shown in Fig. S2a, the real and imaginary parts of the spectra
are in the 0.11 to 0.16 Ω and 0 to 0.016 Ω range, respectively. Since
the simulations are carried out in a single-precision floating-point
format, the data was scaled to unity to avoid underflow or loss of
accuracy. The results were then scaled back to the original values.
Similar to the SOFC experiment, the DP-DRT without regularization
can fit well to the impedance data, see Fig. 10a. Regarding the DRTs
for low enough t’s, the DP-DRT does not have obvious

Figure 6. Outcome of 1000 synthetic experiments carried out using an identical setting as the ones shown in Fig. 5. In (a) and (b) the ‘exact’ DRT is reported
together with the average DRT and the corresponding 95% confidence bands as obtained using the DP-DRT and DPλ-DRT ( 0.1l  ) methods, respectively. (c)
and (d), corresponding distributions of the relative errors.

Table III. Parameters of the ECM (a single ZARC element plus an
inductance) used to fit the SOFC experiment and corresponding
numerical values obtained by regression. The error of each para-
meter outputted by ZView is also shown.

Parameter Regressed value Error

R¥ 1.81 Ω 4.32 × 10-4 Ω
Rct 0.26 Ω 5.56 × 10-4 Ω

0t 2.19 × 10-4 s 1.31 × 10-5 s
f 0.69 2.42 × 10-3

L0 5.36 × 10-7 H 1.37 × 10-9 H

Table IV. Parameters of the ECM (3 ZARC elements) used to fit the
LIB experiment and corresponding numerical values as obtained by
regression. The error of each parameter outputted by ZView is also
shown.

Parameter Regressed value Error

R¥ 0.11 Ω 4.44 × 10-4 Ω
Rct,1 1.69 × 10-2 Ω 8.48 × 10-4 Ω
Rct,2 2.12 × 10-2 Ω 4.42 × 10-4 Ω
Rct,3 5.23 × 10-2 Ω 1.89 × 10-3 Ω

1t 2.34 × 10-3 s 1.23 × 10-3 s

2t 0.20 s 1.08 × 10-2 s

3t 75.30 s 2.33 s

1f 0.54 2.31 × 10-2

2f 0.94 7.78 × 10-3

3f 0.79 1.03 × 10-2

L0 7.61 × 10-7 H 3.64 × 10-8 H
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Figure 7. (a), (c), and (e) Nyquist plots of the EIS response of the HN, PWC, and fractal models, respectively. (b), (d), and (f) corresponding DRTs obtained
using the DP-DRT method. n

exps was set at 0.1 .
1
2W
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Figure 8. (a), (c), and (e) Nyquist plots of the EIS response of the HN, PWC, and fractal models, respectively. (b), (d), and (f) corresponding DRTs obtained
using the DP-DRT approach. n

exps was set at 0.5 .
1
2W
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discrepancies with respect to the DRT reference obtained from the
ECM, as the two leftmost peaks of the ECM-DRT can be recovered
well, see Fig. 10d. For the rightmost peak, which corresponds to the
lowest frequencies probed, and whose corresponding arc is incom-
plete (see Fig. 10a) the DP-DRT recovery is inconsistent with that
obtained with the ECM-based DRT. However, we believe that this is
reasonable, especially considering that the uncertainty on any
estimate obtained from that part of the EIS spectrum is expected
to be high. If the MSE is used as a metric for evaluating the quality
of the model, we note that DP-DRT performs better than the ECM,
see Table SI.

As conducted for the SOFC deconvolution of subsection 3.2.1,
we computed the DPλ-DRT by setting l 10−3 (Figs. 10b, 10e, and
10h) and l 10−2 (Figs. 10c, 10f, and 10i). Consistent with our
earlier insight, the predicted DRT curves are smoother than without

regularization. Further, the loss increases if regularization is
included affecting the recovered impedance. We point the reader to
Fig. 10c where at around f ~ 11 Hz corresponding to the DPλ-DRT
with l ~ 10−2; deviations in both EIS and DRT can be observed.
For the largest ,l the loss and MSE are also the largest among the
cases studied, see Fig. 10i and Table S1. It should again be stressed
that the DRT obtained from the ECM is only a reference and the
“exact” DRT is unknown.

Future Work

We have shown that the DP-DRT model, whose underlying DNN
is a function of the network input z and is parameterized with respect
to Qq Î  with Q N , can recover the EIS and DRT well. Despite
the surprising result, several questions remain. For example, can we

Figure 9. (a), (b), and (c), Nyquist plot of the EIS of the symmetrical SOFC and DP-DRT and DPλ-DRT impedance models shown. (a), (d), and (g) outcome of
the DP-DRT deconvolutions. DPλ-DRT model is shown in the remaining panels with λ ⩾ 0.001 in (b), (e), and (h) and λ ⩾ 0.01 in (c), (f), and (i). (d), (e), and
(f). ECM reference is given in panels (d), (e), and (f). (g), (h), and (i), evolution of the loss and the discrepancy against the ECM reference, the early stopping
iteration is indicated with a labeled vertical line.
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optimize the DNN architecture? One potential direction for that
would be to include filtering, in the form of a 1D convolutional
neural network or a U-net80 as originally used by Ulyanov and
co-workers.64 Another interesting direction would be the study of
under-parametrized networks with Q N as done by Heckel and
Hand.72 In principle, one could obtain a reasonable DRT deconvolu-
tion from a network with a scalar random input and a single layer
without bias (this corresponds to Q N 1= + ), as shown in Fig. 11.
For that, we tested a single ZARC model as implemented in Fig. 2(a)
with n

exps = 0.5 .
1
2W The inverse problem solution obtained using

conventional quadratic programming (QP)56,60,62 without regulariza-
tion is shown for reference in Fig. 11a. The results with a single-
layer neural network without bias are shown in Figs. 11b, 11c, and
11d, where no activation function, a leaky ReLU activation, and a
softplus activation were used, respectively. While the lack of
activation function leads to severe oscillations, the inclusion of an
activation function together with early stopping has a smoothing
effect, allowing the capture of the main peak of the impedance.
Starting from these preliminary results, a thorough investigation of
the role of DNN architecture, activation function, early stopping

cutoff, and single-precision arithmetic should follow the present
work.

Conclusions

Here, we report the surprising results that a DNN with a number
of parameters much larger than the experimental data can be used for
the estimation of the DRT from a single EIS spectrum without
pretraining. The DP-DRT method is shown to be able to recover the
impedance and its underlying DRT not only for simple elements but
also in somewhat pathological situations, for example, when the
timescales overlap, noise is significant, and for elements whose
DRTs are discontinuous. The DP-DRT approach works well also for
real experimental data as it closely matches reference values
obtained with other methods.

This article opens up a new way to perform DRT deconvolution
as well as opportunities for future works, including improving the
DNN architecture, fine-tuning the early stopping criterion, adding
ad-hoc regularization, and elucidating the role of single-precision
arithmetic on DRT inversion.

Figure 10. (a), (b), and (c), Nyquist plot of the EIS of the LIB and DP-DRT and DPλ-DRT impedance models shown. (a), (d), and (g), results of the DP-DRT
deconvolutions. DPλ-DRT model is shown in panels (b), (e), and (h) with λ ⩾ 0.001 and in (c), (f), and (i) with λ ⩾ 0.01. ECM reference is also displayed in (d),
(e), and (f). (g), (h), and (i), evolution of the loss and the discrepancy between predicted DRT and the ECM reference, the early stopping is labeled with a vertical
line.
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