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Electrochemical impedance spectroscopy (EIS) is one of the most widely used experimental tools in elec-
trochemistry and has applications ranging from energy storage and power generation to medicine. Con-
sidering the broad applicability of the EIS technique, it is critical to validate the EIS data against the
Hilbert transform (HT) or, equivalently, the Kramers-Kronig relations. These mathematical relations allow
one to assess the self-consistency of obtained spectra. However, the use of validation tests is still un-
common. In the present article, we aim at bridging this gap by reformulating the HT under a Bayesian
framework. In particular, we developed the Bayesian Hilbert transform (BHT) method that interprets the
HT probabilistically. Leveraging the BHT, we proposed several scores that provide quick metrics for the
evaluation of the EIS data quality.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Electrochemical impedance spectroscopy (EIS) is one of the
most important and versatile techniques of electrochemistry [1].
EIS has been used widely in the fields of energy storage [2,3],
solid-state ionics [4,5], fuel cells [6,7], electrolyzers [8], solar cells
[9,10], porous media [11], sensors [12], biology [13], virological
diagnostics [14], and medicine [15,16]. The EIS technique is par-
ticularly appreciated because it can be carried out for frequen-
cies spanning several orders of magnitude, typically from 1 mHz
to 10 MHz. Obtaining information across such a broad range of
timescales allows one to gain insights from many disparate physic-
ochemical phenomena [17].

The impedance measured by the EIS technique is a transfer
function, and, as such, it needs to satisfy linearity, time-invariance,
and causality [1,18]. Compliance with these properties can be
evaluated experimentally, for example, by varying the EIS mea-
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surement settings systematically [19] or by broadband excitation
[20]. However, these testing procedures are not practically possi-
ble or may take an unnecessarily long time. Alternatively, one can
assess whether the measured EIS spectrum satisfies the criteria
mentioned above using the Kramers-Kronig (KK) relations [21,22].
Such relations, which can be obtained by manipulating the Hilbert
transform (HT) of suitable even and odd functions, link the real
and imaginary parts of the impedance to one another through in-
tegrals over frequencies from 0 Hz to co. While the exact imple-
mentation of KK relations needs impedance data for all possible
frequencies, the EIS spectra, in reality, are only discretely sampled
over a finite interval of frequencies. Methods, including direct in-
tegration and regression of generalized circuit models [18,23-30],
have been developed to overcome this limitation. Consequently,
the KK relations have been available as a tool to assess the validity
of the EIS spectra. For an overview of the use of KK relations on
EIS, the reader is referred to the textbook of Orazem and Tribollet
[1] and the monograph by Lasia [31]. We should remark that the
EIS spectra are rarely benchmarked against the KK relations and
therefore tested for their validity.

In this article, we aim at overcoming this significant gap by tak-
ing a slightly different starting point compared to the KK relations
that are typically used in the EIS analysis [1]. Instead, we are go-
ing to focus on the HT, which, in the context of the transfer func-
tions, is equivalent to the KK relations [32]. The HT is used in many
applications, including fluid mechanics [33], aerodynamics [34],
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Abbreviations

BHT Bayesian Hilbert transform

DRT Distribution of relaxation times

EIS Electrochemical impedance spectroscopy

HT Hilbert transform

HD Hellinger distance

JSD Jensen-Shannon divergence

KK Kramers-Kronig

KL Kullback-Leibler

pdf Probability distribution function

RV Random variable

SOFC Solid oxide fuel cell

A Matrix used to regress the experimental data,
Zexp

AprT Matrix used to calculate Zpg

Dy Differentiation matrix (gt order)

f Frequency

h Column vector used to compute Zy

H Matrix used to compute Zy

1 Identity matrix

Lo Inductance

Z(0,w,Zexp) Negative log-likelihood
p( ) Probability distribution function

Reo Ohmic resistance

S ko Score based on the residuals

Su Score based on the estimated means

SHD Score based on the Hellinger distance score

SjsD Score based on the Jensen-Shannon divergence

w Inverse of the covariance matrix of the prior
on x

X Latent vector

Zexp Vector of experimental EIS data

Zy Vector of HT'd impedance

Zprt Vector of impedance (DRT part only - i.e., Ry
and iwL, terms excluded)

y(logt) Latent function

y Vector of y(logt)'s

€ Experimental error

0 Vector of hyper-parameters, ie, 6=
(0—2 0—2 O.Z)T

Mx Mean of X

MKu Mean of Zy

KDRT Mean of Zpgr

On, exp Standard deviation of the synthetic impedance
error

On Hyperparameter (standard deviation of the ex-
perimental error)

og Hyperparameter (norm penalty)

o Hyperparameter (norm of the derivative
penalty)

po Covariance of x

Xu Covariance of Zy

Wy Angular frequency at which one predicts Zy

® Vector of angular frequencies

@, Vector of w,’s

optics [35], and geophysics [36]. Relative to the KK relations, the
HT has far richer mathematical literature, with the availability of
fast HT methods [37,38] and many theoretical results [32,39,40]. In
the context of analyzing the consistency of EIS data, we will set
up a new framework, which is named as Bayesian Hilbert trans-
form (BHT). As a first step, the BHT approach uses a linear approx-
imation of the impedance, Z(w), with respect to a given basis. In

other words, we will write Z(w) =

> xn¥n(w), where the ¥p(w)'s

are transfer functions and x,’s are random variables (RVs) endowed
with a certain probability distribution function (pdf) that will need
to be determined. Here, we will use the yrn(w)'s originating from
the distribution of relaxation times (DRT) and take the xj’s to be
normally distributed. After having regressed the x;’s, we will be
able to compute Zy(w), i.e., the HT of Z(w) using a simple matrix
multiplication. An important point to note is that both Z(w) and
Zy(w) will be understood as normally distributed RVs. Doing so
will allow us to use analytical formulas and define a number of
scores that quantify consistency of the real and imaginary parts of
the regressed Z(w) against experimental data and with themselves.

The scientific contribution of the paper is twofold. First, we re-
framed the HT of the EIS data in a general Bayesian context, where
we leverage analytical matrix expressions. This allowed us to de-
termine the hyperparameters used in the regression by maximizing
the evidence rather than by an ad hoc guess. Second, we proposed
new ways to score the compliance of Z(w) with the HT. These
scores are based on residual plots, mean discrepancies, and “dis-
tances” between the pdfs of Z(w) and Zy(w). We have also shared
our code and included some of the developed metrics in DRTtools
[41]. We expect that doing so will promote the inclusion of the
HT or KK test of EIS data in existing software packages. Lastly, we
must point out that, despite their importance, the KK relations are
not widely used in the electrochemistry field. This is perhaps due
to the difficulty in understanding the theory and the availability
of modern software. We hope that our contribution will be instru-
mental in overcoming these two challenges.

2. Theory
2.1. Hilbert transform

In this section, we briefly define the HT and recall how to link
HT to KK relations. For an authoritative review of the topic, inter-
ested readers are invited to consult King’s two-volume book [32].
The HT on the real line is defined as the operator that transforms
a function f{w) into another function Hf(w) via the following inte-

gral:
1, f(®)
Hf(w):;P,fooaf)(f()bdw

where the symbol P s(-)d®
which is formally defined as

(1)

denotes the Cauchy principal value,

7 f( )dw—llm ;1@ g, (2)
- el0 |w—®|>¢ w—-—w
Other variants of the HT exist, including the HT on the circle,
the finite HT, the multi-dimensional HT, and the discrete HT [32].
In this article, we will only use (1).
Let us recall a few fundamental properties of the HT applied to
the EIS. If f(z) is an EIS transfer function with f{z) — 0 as z — oo,
then

fre(®) = —H fin (®) (3a)

fim(®) = Hfre(w) (3b)

where fre(®w) = Re(f(w)) and fi,(w) = Im(f(w)) are the real and
imaginary parts of f{w), respectively. We also note that, in the con-
text of EIS, fre(w) and f;,(w) are even and odd, respectively [1].
Enforcing one of the two equations in (3) implies that the other is
satisfied [32]. Therefore, meeting (3) is equivalent to fulfilling the
KK relations, which are the even and odd HTs [1,32].

Lastly, we wish to stress on a notational point. When we have
a function g(w, @) depending on multiple variables and want to
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Fig. 1. Schematic illustration of the Bayesian Hilbert transform method as applied to electrochemical impedance spectroscopy data.

take the HT of g(w, @) with respect to w, we will explicitly indi-
cate the variable used in the transformation by adding a subscript
under the H symbol. For example, for g(w, #), we will designate
with H,g(w, @) the following:

1 o g@.0)
ng(a),Q):;Pf ( @)da) (4)

2.2. The Bayesian Hilbert transform of impedance data

In this section, we describe how the BHT of EIS data is formu-
lated. The BHT methodology is schematically illustrated in Fig. 1.
The cornerstone of the method is to approximate the impedance
using a finite expansion over a latent vector x. Then, from x, we
compute the HT by matrix multiplication. Throughout, we will use
Bayesian statistics. That is, we will attach a Gaussian probability
distribution to the regressed impedance and the predicted HT by
assuming that the latent x follows some prior pdf. Most impor-
tantly, we provide a set of scores that gauge how experimental,
regressed, and HT EIS spectra compare to one another.

2.2.1. Approximation

As outlined in the introduction, we will leverage an expansion
of the impedance on some basis set {{/(w, A)}, where the (w,
A)'s are complex-valued transfer functions dependent on a param-
eter A such thata}iilgoW(w,k) = 0. Explicitly, we will model the

impedance to be

Z(w):iwLo+Roo+/Rx/f(w,A)y(x)dx 5)

where y(A) is some latent function to be determined. Here, we
will take ¥ (w, 1) = mﬁ and A =logt to obtain a DRT-like ap-

proximation of the following type [42]:

Z(w) = iwLy + Rx + /w(a), 7)Yy (logt)dlogt (6)

—00

If the term iwLy is discarded, the HTs of the real or imagi-
nary parts of the impedance can be obtained using H, ¢ (w, T) =

iv(w, 1):
HZ(@) = | Ho(¥ (@, 7))y (log7)dlogt

% (7)
=i [ Y (w, 1)y (ogrt)dlogr

Explicitly, if we define e (w, T) = Re(¥ (w, 7)) = —— and

1+(w7)?
Vim(@, 7) = Im(Y (@, 7)) = -2, we can write that
Zee(©) = HZjp () = f Yre(@. 7)y (log T)d log T (8a)
Zin () = —HZie() = / Vim(@. T)y (log T)d log 7 (8b)

Therefore, if we can estimate y(logt) from either Z.(w) or
Zim(w), then we will be able to obtain Zj,(w) or Ze(w), respec-
tively, thanks to (8). We must stress that, in the context of this ar-
ticle, we will not aim to assign any physical meaning to the (latent)
function y(log 7). Also, if we choose y (logt) = % Ry T §(T — ),

n=1
where Rj, is some parameter and §(t — ) is a Dirac distribution
centered at t,, we will retrieve the Voigt expansion used else-
where in the context of the KK tests [23,25,29].

To approximate y(log t) numerically, we expand it over a finite
set of functions B = {¢;(logt), ¢,(log7), ..., ¢y(logT)} as

N
y(logt) =) yan(logT) 9)

n=1

where the y,’s are scalars. By plugging (9) into (6), we can write
the following two vector equations

Ze.=R.,1+ Ay,re}’ (10a)

Ziy = Low + Ay inY (10b)

where y = (¥1,¥2, ..., yn)T e RN and the Ze, Zip, 1, @ € RM
are vectors such that, for 1 < m < M, (Ze)m = Zie(®m), Zim)m =
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Zim(wm), 1)y =1, and (@)m = wm. Explicitly, the entries of the
matrices Ay re. A, im € RMN are defined as

(Ayre) / Yre(®, ) (log 7)d log T (11a)

(A im) / Vim (@, T)u(log 7)d log T (11b)

We note that these two matrices may be obtained with any of
the methods described elsewhere [41,43].

For notational convenience, we will define the following two
matrices:

Are = (1, Ay,re) (123)
A= (@. Ayin) (12b)
which allow us to rewrite (10) more compactly in the form

Ze = AreXre (13a)
Zim = Aimxim (13b)

where Xre = (R yT)T for (13a), and x;, = (Lo ;/T)T for (13b).
We will suppose that a given EIS experiment is a realization of
the following stochastic process:

Zexpre = AreXre + Ere (14a)

(14b)

where the “errors”,ee and ¢, are two independent Gaussian RVs,
such that &re, &, ~ N(0,021) with I being the M x M identity
matrix. In the ensuing derivation, we will drop the subscripts “re
and “im” from (14) as the two are notationally identical.

Zexp,im = Aimxim + €im

2.2.2. Bayesian Hilbert transform
Bayesian methods leverage conditional probabilities. In particu-
lar, we can write that [44-46]

P(X|@, Zexp)P(Zexp| @) = p(X)P(Zexp|@, X) (15)
where p( - ) is the pdf of the RV in the brackets, the sym-
bol “|” indicates “conditioned to”, and, again, Zeyp is the experi-

mentally measured real or imaginary part of the impedance. The
P(Zexpl®, X) can be obtained from (14) as
2 ) (16)

If we specify a prior on x (i.e. we assume p(x)), then we can
obtain p(X|w, Zexp). We will take x ~ N(0, w1, ie.,

P(Zexp| @, X) = p(€) cx exp (—

pP(X) o exp (—%XTWX> (17)
with the matrix W defined as
1 1(0 0
W=—=I+— 18
o o) o

where Gé and o2 are two real numbers and Dy is the g™ order

differentiation matrix [41,43].
Plugging (16) and (17) into (15) gives the posterior

P(X|®, Zexp) o €XP (— - ;XTWX> (19)

From the latter, it follows that
X|®, Zexp ~ A (Jy, Xx) (20)

where
I, LZEXATZ (21a)
n
1 -1
¥, = < ATA+W> (21b)

We note that ux and X, are functions of the scalars 0,12, ag, and
o2, which we will collect in the vector 6 = (o7, aé, o).

Once the X|Z, is estimated, we can use (8) to compute Zy(w,),
either —HZ;, (w,) or HZi(w,), at a new angular frequency w, as
Zy(w,) =hx ~ ¥ (hp,, hEh") (22)

where the column vector h e RNt! is either hy or h;, defined
next. We note that (h); = (hjy)1 = 0, while all other entries (for

n=1, 2, 3, ..., N)are
() = [ Vre@.. T)gullogT)dlogT (233)
(him) 1 = /wim(a},,t)q&n(logr)dlogr (23b)

More precisely, for the HT of the imaginary part of the data
(Zexp = Zeypim & Zy = Zy; ) We need to take h = hre. Instead, for
the HT of the real part of the data (Zey, = Zexp re & Zy = Zyy i) We
need to set h = h;,.

We can rewrite (22) in matrix form as

Zy(w,) =Hx~ ¥ (jy, Zn) (24)

defined as
ZH (0)*) =

where the angular frequency vector is
@, = ((1)* 1, W25, W, K)T € RK and the
(Zp(@,1), Zu(w,2), ..., Zy(w, k)" € RX. Further to that,

My =Hp, (25a)
Sy =HZH' (25b)
with the following definition of the matrix H ¢ RKx (N+1)
h(w,,l)
h((,l)*.z)
Hw,) = . (26)
h(w, k)

The DRT-only part of the EIS spectrum, i.e., Zg, for which the
resistance and inductance contributions are not considered, can be
obtained at w, using

Zprr (@,) = AprrX (27)

where the Apgr € RK* N+ s defined following analogous reason-
ing and notation behind (23) and (26). In particular, we will define
the entries of Apgrre Or Apgrim to be 0 in the first column, ie.

(Apgr.re)y 1 = (ApRrim)y; =0, and

(Aort ) = [ Vie(@.)ie T)u(log T)dlog T (28a)
(Aokrim) ner = / Vi (@)1 T)pn(l0g 7) dlog T (28b)

for k=1,2,....,Kand n=1,2,...,N. As above Zppy(w,) is a mul-
tivariate normal, i.e.,
Zpgr(®,) ~ A (Mpgrs ZDRT) (29)
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where pprr and Xpgr are defined as

Morr = AprT My (30a)

Yprr = Aprt ZxADRT (30b)
2.2.3. Choosing the hyperparameters

The analysis described in the previous subsection can be car-
ried out only if the hyperparameter vector 6 = (o7, aﬁ?, o7 is
set [44,45]. To determine it, we will maximize the marginal likeli-
hood (or evidence) [47], obtained by integrating (or marginalizing)
the likelihood, (16), with respect to the prior:

p(Zexp|w» 0) :>/RNHP(Zexp

As the prior is Gaussian, we can follow classical manipulations
(see Section S.1 in Supplementary Information) and obtain [46]

x, o7)p(xlof, o7) dx (31)

1 1 4, M M
log p(Zexp|. 0) = 5 log|W| — 5 log | %' | — = log () — E(ky) — 5 log (27)
(32)
In the implementation of the BHT method, the # maximizing

the experimental evidence is found by minimizing the negative
marginal log-likelihood defined as

Z(0, ©, Zexp) = —10g p(Zexp| @, 6) (33)

in other words

0 = argmin ,2”(0', w, Zexp> (34)
.

2.3. Scoring the EIS data

In the scientific literature, there are no metrics that can be
used to score the compliance of the EIS data with the KK rela-
tions. Therefore, we developed four new metrics based on resid-
uals, mean predictions, and distances between estimated distri-
butions. All the scores were defined so that their outcomes are
real numbers between 0 and 1 (or equivalently 0 and 100%).
An HT-consistent EIS spectrum will score near 1. Instead, an HT-
inconsistent EIS spectrum will score close to 0.

In the literature about KK relations applied to EIS, the qual-
ity of the impedance data is typically assessed by examining the
residuals. Such residuals are obtained by subtracting (up to a con-
stant or a linear function of the angular frequency) the experimen-
tal real/imaginary data from the HT estimate obtained using the
imaginary/real part of the EIS data. One metric could leverage the
residuals by computing the number of experimental points that lie
within k standard deviations of the HT prediction. Such a score can
be formally defined as

1 M
Skore = M Z 1(IRoc + Zhi e (Wm) — Zexpre (Wm)| < ko (wm))

m=1

(35a)

1 M
Stoim = 17 2 1(1@mlo + Zit.re (©m) — Zexpim (@m)| < ko (&)
m=1

(35b)

where 1( - ) is the indicator function, which is 1 if its argument is
true and O otherwise, o(wp,) is the standard deviation of the HT
at wm, and Ry, and Ly are obtained by Bayesian regression from
Zexp,re and Zexp.im’ respectively. We note that 0 < s ;, < 1 and
Sko < S(k+1)o and that the smaller the residual, the closer the score
will be to 1.

The s 4 re and sy, jn metrics compare data, the realiza-
tion of an RV, and predictions, other RVs. However, other use-
ful scores could compare the two de facto analogous RVs, that
can be obtained from different parts of the data, namely Zy (@) ~
A (R, Xy) and Zprp (@) ~ A (RprTs Xprr)- One proposed score,
which we call s, consists in summing 1 to the negative of the
relative distance between the mean vectors gprr and py:

1 ””’DRT.re B M’H,re ”

— 36a
Mol el (362)

Spre =

”ILDRT,im - ”’H,im”

— 36b
Thtoer ]l & Tl (36b)

Su.im =1

From these last two formulas, it follows that 0 < s, < 1 and
that the closer is s, to 1, the more similar the two means fpgr
and py will be.

Another sensible approach entails comparing the pdf’s of Zy(w)
and Zprr(w). This comparison can be done using some metrics.
One particularly convenient one is called the Hellinger distance
(HD) [48]. The square of the HD, (HD(f, g))%, between two pdfs f(x)
and g(x) can be defined as

(HD(f,£)* =1 -/ /f(x)g(x)dx (37)

where 0 < HD(f; g) < 1 and HD(f, g) = 0 if and only if f(x) = g(x).
Therefore, a viable score could use [48]

2 Yoo 1 Gopr)®
(HD(Pzpgy- Pzy) (@) =1 /%e T T (38)
DRT H

where pz . and pz, are the pdfs of Zpgr(w,) and Zy(w,) at the
scalar angular frequency w,. We must point out that in (38) the
dependence of upgrt, Oprr» MH, and oy on w, has been omitted
for the sake of keeping the equation compact. Similar to what we
did for the residuals, we can define an average HD as follows

M
FD = 1 3 HD(prq. ) (@) G9)

m=1

which allows us to compute two HD scores, Syp, re and Syp,im

SHD,re = 1 — mre (40a)

SHD,im = 1- mim (4Ob)

where HDye is the average Hellinger distance between Zpgr e and
Zy, re OVer w, and HDj,is the average Hellinger distance between
Zpgr, im and Zy_ iy, over w,. We should stress that while Zpgr, . and
Zy im are obtained from the sole real part of the EIS spectrum,
Zpgrr, im and Zy e are calculated using only the imaginary portion
of the EIS. Therefore, both HD;eand HD;; compare the real part
with the imaginary part of the EIS data.

A final metric leverages the Kullback-Leibler (KL) discrepancy or
relative entropy, dg.( - || - ), which is often used to measure the
degree of similarity between the two pdfs [46]. Unfortunately, we
were not able to produce a consistent score using the KL diver-
gence alone, because di( - || - ) is neither symmetric nor bounded.
Instead, we will use the Jensen-Shannon divergence (JSD), which
is based on the KL but is symmetric and bounded between 0 and
log2 [49]. If we define

Z(@.) = 5 (Zorr(®.) + Za(®.)) (41)

the JSD between Zpgr(w,) and Zy(w,) is the following symmetrized
KL divergence:

ISD 2okt (©0.), Z0(@.) = 5 (e Zorr (@) |2 (@.)) + da Za(@) |2 (@.))  (42)
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Table 1
Exact EIS responses used for the synthetic experiments.
Model Z(f) Reference  Ref. Figures
Ret -
ZARC R+ i [31] 2-4
Ret Rt ~
2 x ZARC R°°+W+W [31] 5-6
Piecewise Constant (PWC)  Re + "f(f% (In(1- ﬁ) —In(1- m)) [44] 7
i Ret -
Lo+ZARC iwLy + Roo + Py 8-9
. . Ry Ry -
Failed experiment R + Re(mmm)¢I ) + lm( Ty ) $1-S2
Table 2
Values of the circuit parameters utilized in select synthetic experiments.
Model Rw (2) R (2) 7o (S) ) Lo (H) Ref. Figures
ZARC 10 50 1.0 0.8 2-4
2 x ZARC 20 [50,50]  [0.1, 10] [0.8, 0.8] 5&6 LHS
2 x ZARC 20 [50,50] [0.1,1.0] [0.8, 0.8] 5&6 RHS
PWC 10 50 [10, 0.1] 7
Lo+ZARC 10 50 1.0 0.8 50 x 10 8
Lo+ZARC 10 50 1.0 [0.8,1.0] 5.0 x10%  S1-S2

As we did above for residuals and HD, the average JSD will be
averaged over the experiment as follows:

M
JSD(Zorr. Zu) = ﬁ 3 (di Zorr (@m) 12y (@) + dx. (Zu (@n) | 2w (@n)))  (43)
m=1

Therefore, we can develop two JSD scores

where ere and g, are independent and identically distributed RVs
with a Gaussian distribution with a mean of 0 and standard devi-
ation o exp, i.€., &re, &im ~ N (0, o,%exp). We note that On.exp is con-
ceptually different from o,. While oy, o, is a parameter used to
draw the synthetic experimental data, o, is one of the hyperpa-
rameters optimized by maximizing the evidence. In all synthetic
experiments, we set 0, o, = 0.8 €2, a relatively high value for the
given circuit parameters.

SjsD,re = bgi}% (44a) As a first step, we investigated how the BHT performs for a re-
sistor in series with a ZARC element. The corresponding synthetic

__ impedance spectrum obtained using (45) is shown in Fig. 2. The

SisD.im = log2 — JSDim, (44Db) real and imaginary parts can be separated and regressed separately
' log2 using (20) to obtain the latent x. In turn, x can be used to obtain

where JSD,. is the average JSD between Zpgr r and Zy  and
JSDinis the average JSD between Zpgr iy and Zy . Consistently
with what we did for other scores, the sjsp’s are bounded between
0 and 1 and a sysp close to 1 implies that Zpgr and Zy are consis-
tent, while if the sip nears 0, the two are inconsistent. We must
note that no close formula is known for the JSD, therefore the JSD
was obtained by Monte Carlo sampling.

3. Results
3.1. Synthetic experiments

To benchmark the performance of the BHT method, we tested
it systematically against controlled synthetic experiments with
known standard circuits. In this section, we will illustrate the BHT
framework and the EIS data scoring. The BHT method follows the
logical path shown in Fig. 1. All circuits studied are reported in
Table 1 with their parameters listed in Table 2. Consistently with
our earlier articles, the frequency range of analysis was selected to
be between 10~% and 10* Hz with a resolution of 10 points per
decade [50,51]. We must stress that the experimental impedance
was generated by adding white noise to the real and the imaginary
parts of the exact impedance, consistently with (14) and (16). That
is, given the exact circuit impedance, Z,,, (w), the experimental
data Z, (w) is obtained as follows:

Zexp (@) = Zexact (W) + Ere +1 Eim (45)

1) the regressed and smoothed impedance, Z; 2) the Ry- and Lj-
subtracted impedance, Zpgr; and 3) the HT impedance, Zy. The real
and imaginary parts of the experimental EIS are shown in Fig. 2 (b)
and (c). In these two panels, the mean impedance (black line) and
the 30 credible intervals (solid grey shading) are reported. By vi-
sual inspection, it appears that the artificial experiments fall within
the credible bands. As already outlined above, the hyperparam-
eter vector 0 = (o2, aé, o2)7 used to find these estimates was
obtained by evidence maximization, which was achieved by find-
ing the minimum of .#(0, ®, Zexp) with respect to 6. We plotted
in Fig. 3 the 2 (0, @, Zexp re), panel (a), and £ (0, ®, Zeyp i) as a
function of o4 and o,, where in both cases the o, was fixed,
ie, Op =Onexp. We can see that the minimum is rather sharp
and elongated along the o, direction, indicating a small penalty
on the derivative. Interestingly, for both real and imaginary data,
the minima are obtained for relatively small values of - and -

O'ﬂ U}\_

(5 =293 x 1073 and 736 x 10~ and -, = 1.36 x 10~* and
B A

1.36 x 1073 for the real and imaginary parts, respectively), which
correspond to a small smoothing penalty, as realized by the matrix
W, on the prior-less term ;—ZATA. After conducting the Bayesian

regression, Zy and Zpgr can bne predicted. In particular, upon adding
the Ry, or wly, the Zy can be compared to the experiments. The
comparison is reported in Fig. 4 (a) and (b) for the real and imag-
inary parts of the EIS, respectively. It is apparent that Zy as ob-
tained from the imaginary (real) part can well recover the real
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Fig. 2. (a) Nyquist plot of the synthetic experimental and exact impedance; the reported numbers indicate frequencies in Hz. (a) real and (b) imaginary parts of the
impedance and Bayesian regression. Mean and 3¢ credible intervals are shown as a black line and a solid grey region, respectively.
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Fig. 3. Negative of the log-likelihood, £ (6, @, Zexp) = —10g p(Zexp|®@, @), computed for the (a) real and (b) imaginary of the impedance data of Fig. 2. The o, was set to be

equal to oy, ., and the minimum is indicated with the star symbol.

(imaginary) part of the synthetic experiment. This is further con-
firmed by the s, values, which are in the range of 95%-98%, see
Table 3. An alternative view is given by the residuals, which are
obtained by subtracting the experimental data from the mean HT’s
impedance, py, plus the offset Ry, or wlg. Fig. 4 (c) and (d) report
the real and imaginary residuals, respectively, together with their
30 bands (solid gray region). We can observe that all points fall
within the grey region, indicating that s3, e = S34 jm = 100%. From
the scores reported in Table 3, the residual scores are high, sug-
gesting that the EIS spectrum is HT- (or KK-) consistent. However,
we note that a visual inspection of the residuals does not yield any
direct information about the distribution of the residuals. There-
fore, we also reported the kernel-estimated densities of the resid-
uals in Fig. 4 (e) and (f). There, we observe that the densities are

centered around 0 and endowed with a high degree of symmetry.
Further, as one can see from Table 3, the s, syp, and sjsp are closer
to 100% rather than 0, suggesting that the estimated distributions
of Zy and Zpgy also match one another.

We then analyzed two sets of synthetic experiments based on
two ZARCs (indicated as 2 x ZARC) in series, see Tables 1 and 2 for
the exact impedance and parameters used, respectively. For these
circuits, it is well known that the latent y cannot be obtained

easily, especially if the smoothing (i.e. 01—2) is too strong and the

characteristic timescales are partially or %ully overlapping [44,45].
Fig. 5 (a) and (b) report the exact and synthetic EIS spectra of the
two cases. Fig. 5 (c) and (d) correspond to the regressed imagi-
nary parts. We note that similar regression was also done for the
real part, see Table 3, but is not shown for the sake of brevity.
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Table 3
Scores obtained for synthetic and real experiments.

Residual Mean Hellinger Distance  Jensen-Shannon Discrepancy  Ref. Figures
Element Sio, re S20, 1e S30, e Sio,im  S20.im  S30,im Sp re Su, im SHD, e SHD, im SjsD,re SISD, im
ZARC 87.7% 100.0%  100.0% 60.5% 91.4%  100.0% 99.1% 97.6% 57.1%  63.6% 76.8%  79.6% 2-4
2 x ZARC 74.1% 100.0% 100.0% 66.7%  95.1%  100.0% 99.5% 97.2% 62.6% 60.6% 79.3%  74.4% 5&6 LHS
2 x ZARC 76.5% 100.0% 100.0% 61.7%  93.8%  100.0% 99.6% 97.6% 61.9% 57.3% 78.8%  71.1% 5&6 RHS
PWC 71.6% 100.0% 100.0% 64.2%  93.8%  100.0% 99.1% 96.2% 59.1%  56.2% 77.1%  70.5% 7
Lo+ZARC 87.7% 100.0% 100.0% 60.5% 91.4%  100.0% 99.1% 97.6% 57.1%  63.6% 76.8%  79.6% 8
failed exp 54.3% 77.8% 86.4% 39.5%  753%  85.2% 95.9% 87.3% 35.1% 31.6% 48.0%  42.2% S1-S2
DDT-model  88.9% 97.5% 100.0%  75.3%  81.5%  87.7% 99.4%  97.0% 60.5%  55.5% 78.6%  72.0% S9
LisN 44.4% 92.6% 96.3% 753%  84.0%  86.4% 98.8% 97.7%  209%  55.6% 29.1%  67.4% S10
LIB 94.1% 98.0% 100.0% 47.1%  80.4%  100.0% 99.3% 95.2% 81.0% 36.2% 93.1%  46.0% S11
SOFC 100.0%  100.0%  100.0% 84.0% 98.8%  100.0% 99.7% 98.9% 67.4%  52.2% 86.5%  67.3% 11
2H MoS; 91.5% 97.9% 100.0% 76.6%  85.1%  93.6% 99.7%  99.0% 82.7%  68.3% 92.4%  80.0% 12
Si NC 92.6% 98.1% 98.1% 40.7%  63.0%  79.6% 99.5%  98.7% 57.6%  29.6% 77.3%  38.2% S12
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Fig. 5. Nyquist plot of the impedance response of two ZARC elements in series with (a) partially and (b) fully overlapping features; the reported numbers indicate frequencies
in Hz. (c) and (d) imaginary part of the EIS spectrum as a function of the frequency and corresponding to the Nyquist plots in panels (a) and (b), respectively.

Before discussing Fig. 6, we must point out that the panels (a) &
(c) and (b) & (d) of Fig. 5 correspond to (a), (c) & (e) and (b), (d)
& (f) in Fig. 6. The obtained HT's impedances, Zy, are plotted in
Fig. 6 (a) and (b). Both Zy match well the synthetic experiment,
leading to s, ~ 100%. Similarly, we plotted residuals and their
distributions in Fig. 6 (¢) & (e) and (d) & (f). Unsurprisingly, the
results are consistent with expectations that the residuals should
fall within the 30 bands with rather symmetric distributions. As
shown in Table 3, all scores confirm the built-in consistency of the
EIS spectrum.

We also applied the BHT method to the piecewise constant
(PWC) element. This element is somewhat pathological because
the exact y is discontinuous and therefore requires ad hoc regu-
larization [44,45]. We report in Fig. 7 (a) the exact and synthetic
EIS of the PWC element and in Fig. 7 (b) the regressed imaginary
part. The Zy iy, reported in Fig. 7 (c), which was obtained with
the data of Fig. 7 (b), matches the experiment well. Furthermore,
the residuals, shown in Fig. 7 (d), appear to be well within the 3o
credible interval with the underlying distribution being character-
ized by some degree of symmetry. The scores, see Table 3, are also
consistent with the visual analysis and indicate, as expected, that
the data comply with the HT.

The synthetic experiments illustrated above assumed that there
was only one resistor in the series being connected to the main el-
ements. However, inductive features could also be present in the
EIS data. These inductances could be modeled by adding a wLg
term to the imaginary part of the impedance, see (5). While the
HT of a constant is formally O, the HT of wLy is infinite [32]. There-
fore, the inductance component needs to be subtracted from the
impedance data at the regression stage and added later. This is a
delicate issue that the BHT method can handle. We show that in
Fig. 8 (a), where an inductor is added to the circuit of Fig. 2 (a), see
Table 2 for the parameter values. Not only could our framework re-
cover the imaginary part of the impedance, as shown in Fig. 8 (b),
but it also reliably retrieved an HT of the data that matched the
experiments well. This consistency is shown in the prediction and
residual plots in Fig. 8 (c) and (d), respectively, and in all computed

scores, see Table 3. One may also wonder how well the BHT would
do in retrieving the mean values of the circuit parameters, i.e., Ry
and Loy, and the o, ¢y, from 0. We tested that by carrying out 2000
artificial experiments, for which the #’s were obtained by maxi-
mizing the evidence. The resulting mean values of Ry, and Ly and
the corresponding o, = (#); are shown in Fig. 9 as a joint distri-
bution plot. The values obtained deviate little from their externally
assigned values, see Table 2, showing little correlation to one an-
other. One important point to note is that, while these point esti-
mates did not comply with the Bayesian philosophy, we think it is
important to highlight that the BHT methodology developed here
consistently retrieves the ground truth of the studied synthetic ex-
periments.

Furthermore, we wished to determine if the BHT could detect
inconsistent impedance data. As a first example, we used a circuit
composed of two slightly different transfer functions for the real
and the imaginary parts. The actual model is shown in the last
row of Table 1, and the parameters can be found in Table 2. The
Nyquist plot of such an artificial impedance is shown in Fig. S1 (a).
In this specific case, the exact impedance is not a transfer function,
and therefore, the HT is expected to detect that. In other words, if
we performed HT on Zi(w), we would not be able to obtain Z;,(w)
and vice versa. The inconsistency of the data is not apparent if the
real and the imaginary parts of the EIS are regressed using the BHT,
see Fig. S1 (a) and (b). On the other hand, the HTs in Fig. S2 (a)
and (b) show a significant deviation from the experimental data.
This discrepancy is even more evident if one looks at the residuals,
which are bimodally distributed, see Fig. S2 (c) and (d). Further,
all scores in Table 3 are lower than that of the previous synthetic
experiments, indicating a decreased reliability and inconsistency in
the data.

As a second example, we used frequency-dependent drift on
a given EIS parameter to model deviations from an ideal trans-
fer function. We showed the BHT and corresponding scores were
able to detect that the EIS data is inconsistent as a consequence
of the drift. To generate the EIS spectra, we employed the same
baseline 2 x ZARCs impedance model illustrated above (see the
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Fig. 6. (a) and (b) imaginary part of the HT's data with (c) & (d) residuals and (e) & (f) their distributions also shown. The left-hand and right-hand sides in this figure

correspond to the left-hand and right-hand sides of Fig. 5.

second lines of Tables 1 and 2). The low-frequency drift function,

C(w, p) = log}JmJ log(’”‘/‘)“j; o’ ), multiplied R ; as follows
“min m

in

Ret2(@0) =Rer2 (@, ) (46)

where wmax and w,;, are the highest and the lowest angular fre-
quencies, respectively, and p is a number between 1 and 1.5; p =1
indicates no drift, ie., no deviation from ideality. The real and
imaginary parts of the exact impedance are shown in Fig. 10 (a)
and (b). Fig. S3 (a), (b), and (c) show the Nyquist plot and real
and imaginary parts of select synthetic EIS spectra, respectively.
Using 1000 synthetic experiments for each p, we computed the
average S = % of the scores described in Section 2.3. As shown
in Fig. 10 (c), all the scores, except for $;,, decrease as p increases.
This trend is consistent with the intuition that increasing the drift
will increase the inconsistency in the impedance data and there-
fore decrease S. Additionally, we report regression and prediction
results as well as the residuals for p = 1.5 and 0y ¢, = 0.1, 0.8,

and 1.6 in Figs. S4, S5, S6. Inconsistency between the real and
imaginary part of the synthetic data can be observed by comparing
with the BHT prediction with the real part shown in the panels (c).
The residual plots in the (d) panels of these figures correctly indi-
cate severe non-stationarity at low frequencies, with the credible
bands increasing as oy, o, increases.

As a third example, we used the model of Murer and co-
workers [52], which consists of an RC impedance with a time-
drifting polarization resistance:

Rp(t)

1+ iCL)Rp (®)Cal (47)

Z(w) =Rq +

n
where Rg = 50 ©, Rp(0) =500 Q, t(fn) = flk Cy=2 x102F,
k

and Ry (t) = Rp(0) — k- v/t with k- = 1.55 or Ry(t) = Rp(0) + k..t

with ky =5 x 10*692 for the time-decreasing or time-increasing
polarization resistance, respectively. The corresponding Nyquist
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plots are shown in Fig. 11 (a) (decreasing) and (b) (increasing)
where the reference spectrum with Rp(t) = Rp(0), the drifting
noiseless impedance, and stochastic experiments with oy, ey, = 3
are presented. After regressing real and imaginary parts of the
spectra, see panels (a) and (b) of Fig. S7 and Fig. S8, we computed
the HT and compared that to the imaginary and real parts of the
spectra as shown in panels (c) and (d) of Fig. S7 and Fig. S8. The

deviations, present in the residuals displayed in panels (c) to (f)
of Fig. 11, indicate that the BHT method can correctly capture the
time drift in the underlying EIS data.

As the last set of synthetic experiments, we also studied if the
BHT approach developed could be used to test if EIS data from
batteries and supercapacitors are HT-compliant. To be consistent
with the theory above, we applied the BHT to the admittance de-
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Fig. 11. (a) and (b) Nyquist plots of the time-drifting impedance. BHT residuals computed using the (c) & (d) real and (e) & (f) imaginary parts of the impedance data. The
left- and right-hand-side panels correspond to time-decreasing and time-increasing polarization resistance, respectively.

fined as Y(w) = 1/Z(w). More details can be found in Section S.2
of the SI. We first evaluated the synthetic data obtained using the
DDT (distribution of diffusion times) model [53,54], see Section S.3
for details. The admittance of the real part and the imaginary part
as obtained by BHT are shown in Fig. S9 (c) and (d); both match
well the synthetic experiments. Additionally, the residual points
and their distributions are shown in Fig. S9 (e) and (f). All residuals
center near 0 with a seemingly unimodal distribution, suggesting
that the EIS data are consistent. The scores listed in Table 3 also
support this conclusion. As a second example, we generated the
synthetic impedance of a LisN battery [55] with the frequencies
selected in the range from 18 Hz to 4 x 10° Hz. The Nyquist plots
of the impedance and corresponding admittance are shown in Fig.
$10 (a) and (b), respectively. The admittance predicted by the BHT
is reported in Fig. S10 (c) and (d). While a good match can be
observed for f < 7 x 10* Hz, above that threshold, a small dis-
crepancy appears. The residuals shown in Fig. S10 (e) and (f) also
reflect this deviation.

3.2. Real experiments

The analysis of the BHT method would be incomplete if real
experiments were not analyzed. For this reason, we examined two
sets of experimental data that had been used in our prior publica-
tions [43-45]. First, we tested the BHT against the data obtained
from a commercial battery [43,45]. The EIS spectrum was collected
from a LiCoO, battery (Ansmann 18650) at a 25% state of charge
from 5 mHz to 600 Hz with 10 points per decade. The impedance
spectrum is drawn in Fig. S11 (a). We first estimated the imagi-
nary part of the spectrum using Bayesian regression. The estimated
impedance data shows little deviation from the experimental mea-
surement and falls within an extremely narrow credible band, see
Fig. S11 (b). For the obtained Zy ., the credible band only slightly
enlarges to be observable and the deviations are still small, see Fig.
S11 (c). We further plotted the discrepancy between Zy and Zexp
in Fig. S11 (d), where clear deviations appear only at low frequen-
cies for f <10~2 Hz. The distribution of residuals reflects this in-
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Fig. 12. (a) Nyquist plot of the BLFP|[SDC|BLFP SOFC and (b) its regressed imaginary part; the reported numbers in (a) indicate frequencies in Hz. (c) BHT of Zey, im and (d)

corresponding residuals vs. frequency and their distribution.

sight and is centered at the origin with small dissymmetric fringes
around it. The scores in Table 3 also support the above assessment
and suggest that the quality of the imaginary part of the spectrum
is likely to be better than that of the real part.

We also analyzed an EIS spectrum obtained from a symmetri-
cal solid oxide fuel cell (SOFC) with 15% Sm-doped CeO, (SDC) as
the electrolyte and BaggsLag gsFegosPo0503-5 (BLFP) as the elec-
trode [56]. The impedance data were obtained at 700°C under a
synthetic air atmosphere (a mixture of N, and O, in a 0.79:0.21
ratio) and a total pressure of 1 atm. The EIS measurement was
conducted in a frequency ranging from 0.1 Hz to 247 x 10%
Hz with 15 points per decade, as reported in Fig. 12 (a). While
we performed BHT regression for both the real and the imagi-
nary part of the experimental data, we only show the analysis
Of Zeyp, im- As shown in Fig. 12 (b), Bayesian regression is capa-
ble of capturing the imaginary part well with no notable dis-
crepancy and a credible band too narrow to be observable. The
high quality of the data is evident from Fig. 12 (d), where a re-
markably good match is observed between the Ry + Zy r and the
Zexp, im- We further show the residual between these two terms in
Fig. 12 (d). One can notice that the residuals are unimodally dis-
tributed with the center of the distribution placed near the origin.
The high quality of the impedance data is further confirmed by the
scores listed in Table 3, which indicate strong compliance with the
HT.

We also tested the validity of the BHT approach developed
against experimental battery data, where, as above, the analysis
was done on the admittance. As a first example, we used data
taken from a MoS;,-based battery [57]. The Nyquist plot of the
EIS spectrum is shown in Fig. 13 (a) with the corresponding ad-
mittance in Fig. 13 (b). As shown in Fig. 13 (c¢) and (d), the BHT
can retrieve the experimental data reliably, suggesting consistency.
This is further confirmed by the residual plots, see Fig. 13 (e) and

(f), which are unimodally distributed and centered around the ori-
gin. The obtained scores, see Table 3, also support the conclusion
that the admittance of the MoS, is HT-consistent. Another exam-
ple is that of a silicon-nanowire-based lithium-ion battery [58].
Fig. S12 (a) and (b) show the Nyquist plot of the impedance and
corresponding admittance. One can observe that the BHT'd admit-
tance matches the experimental data well, see Fig. S12 (c) and (d).
The residuals have unskewed distributions with their means lo-
cated near the origin. The scores are also HT-consistent and indi-
cate good data quality.

4. Conclusions

Compliance with the HT or the KK relations is a cornerstone of
EIS analysis. While this is an important and generally appreciated
fact, practitioners rarely test their data for that. In this article, we
aim at bridging this gap by putting forward two innovations. First,
we reframed the HT in a probabilistic Bayesian framework. Doing
so allowed us to identify the credibility of the HT'd EIS data and, in
turn, use that credibility to compare predictions. Second, we estab-
lished several criteria to score the impedance data. We assigned a
score value between 0 and 1, where the higher the score, the bet-
ter the experimental impedance Z(w) compliance with the HT. The
scores were developed by leveraging residuals, distances between
the means, and probabilistic discrepancies between predictions. By
applying the BHT to the admittance, we established that it could
be used to analyze unbounded EIS spectra typical of batteries and
supercapacitors.

Various research topics could expand on this work. The basis
set used here could be further extended to include spectral and
pseudo-spectral elements, e.g., radial-basis functions, to improve
accuracy. Also, more metrics may be developed to score the quality
of EIS against the KK relation or HT. Furthermore, new standard-
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and their distributions.

ized test cases and procedures may be proposed to benchmark al-
gorithms that assess the compliance of EIS data with the HT or KK

relations.

Sharing our source code may prove to be useful to researchers
and speed up innovations in this area. We also added related func-

tionalities to the DRTtools with the intent of releasing an easy-to-
use HT package to the entire electrochemical community. Lastly,
we wish to emphasize that by formalizing a BHT method, this arti-
cle may revive research in the area and promote the benchmarking
of the EIS data consistency by HT or KK relations.
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Algorithm
Input: zZ exp,re and Z exp,im
OUtput: Zrea Zima ZH,rea ZH,ima ZDRT,rea and ZDRT,im

for Zexp in {Zexp,rer Zexp,im}:

[S—

2. Estimate u, and X, using (21)

. Compute optimal 8 = (a,%, aﬁz, af)Tusing (33)

3. Compute puy and Xy using (25), uprt and Eprt using (29)

end
compute the scores Sy, Sy, Sup, and Sysp.
plot:

b. residuals and density distribution

a. Zyre + R and Zyy i, + iwl against Zeyp e and Zgyp i, respectively

Code availability

The implementation of the method can be found at https:
//github.com/ciuccislab/BHT ~ and  https://sites.google.com/site/
drttools/
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