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a b s t r a c t 

Electrochemical impedance spectroscopy (EIS) is one of the most widely used experimental tools in elec- 

trochemistry and has applications ranging from energy storage and power generation to medicine. Con- 

sidering the broad applicability of the EIS technique, it is critical to validate the EIS data against the 

Hilbert transform (HT) or, equivalently, the Kramers–Kronig relations. These mathematical relations allow 

one to assess the self-consistency of obtained spectra. However, the use of validation tests is still un- 

common. In the present article, we aim at bridging this gap by reformulating the HT under a Bayesian 

framework. In particular, we developed the Bayesian Hilbert transform (BHT) method that interprets the 

HT probabilistically. Leveraging the BHT, we proposed several scores that provide quick metrics for the 

evaluation of the EIS data quality. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Electrochemical impedance spectroscopy (EIS) is one of the

ost important and versatile techniques of electrochemistry [1] .

IS has been used widely in the fields of energy storage [ 2 , 3 ],

olid-state ionics [ 4 , 5 ], fuel cells [ 6 , 7 ], electrolyzers [8] , solar cells

 9 , 10 ], porous media [11] , sensors [12] , biology [13] , virological

iagnostics [14] , and medicine [ 15 , 16 ]. The EIS technique is par-

icularly appreciated because it can be carried out for frequen-

ies spanning several orders of magnitude, typically from 1 mHz

o 10 MHz. Obtaining information across such a broad range of

imescales allows one to gain insights from many disparate physic-

chemical phenomena [17] . 

The impedance measured by the EIS technique is a transfer

unction, and, as such, it needs to satisfy linearity, time-invariance,

nd causality [ 1 , 18 ]. Compliance with these properties can be

valuated experimentally, for example, by varying the EIS mea-
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urement settings systematically [19] or by broadband excitation

20] . However, these testing procedures are not practically possi-

le or may take an unnecessarily long time. Alternatively, one can

ssess whether the measured EIS spectrum satisfies the criteria

entioned above using the Kramers-Kronig (KK) relations [ 21 , 22 ].

uch relations, which can be obtained by manipulating the Hilbert

ransform (HT) of suitable even and odd functions, link the real

nd imaginary parts of the impedance to one another through in-

egrals over frequencies from 0 Hz to ∞ . While the exact imple-

entation of KK relations needs impedance data for all possible

requencies, the EIS spectra, in reality, are only discretely sampled

ver a finite interval of frequencies. Methods, including direct in-

egration and regression of generalized circuit models [ 18 , 23–30 ],

ave been developed to overcome this limitation. Consequently,

he KK relations have been available as a tool to assess the validity

f the EIS spectra. For an overview of the use of KK relations on

IS, the reader is referred to the textbook of Orazem and Tribollet

1] and the monograph by Lasia [31] . We should remark that the

IS spectra are rarely benchmarked against the KK relations and

herefore tested for their validity. 

In this article, we aim at overcoming this significant gap by tak-

ng a slightly different starting point compared to the KK relations

hat are typically used in the EIS analysis [1] . Instead, we are go-

ng to focus on the HT, which, in the context of the transfer func-

ions, is equivalent to the KK relations [32] . The HT is used in many

pplications, including fluid mechanics [33] , aerodynamics [34] ,

https://doi.org/10.1016/j.electacta.2020.136864
http://www.ScienceDirect.com
http://www.elsevier.com/locate/electacta
http://crossmark.crossref.org/dialog/?doi=10.1016/j.electacta.2020.136864&domain=pdf
mailto:francesco.ciucci@ust.hk
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Abbreviations 

BHT Bayesian Hilbert transform 

DRT Distribution of relaxation times 

EIS Electrochemical impedance spectroscopy 

HT Hilbert transform 

HD Hellinger distance 

JSD Jensen-Shannon divergence 

KK Kramers-Kronig 

KL Kullback-Leibler 

pdf Probability distribution function 

RV Random variable 

SOFC Solid oxide fuel cell 

A Matrix used to regress the experimental data, 

Z exp 

A DRT Matrix used to calculate Z DRT 

D q Differentiation matrix ( q th order) 

f Frequency 

h Column vector used to compute Z H 
H Matrix used to compute Z H 

I Identity matrix 

L 0 Inductance 

L (θ, ω, Z exp ) Negative log-likelihood 

p ( · ) Probability distribution function 

R ∞ 

Ohmic resistance 

s k σ Score based on the residuals 

s μ Score based on the estimated means 

s HD Score based on the Hellinger distance score 

s JSD Score based on the Jensen-Shannon divergence 

W Inverse of the covariance matrix of the prior 

on x 

x Latent vector 

Z exp Vector of experimental EIS data 

Z H Vector of HT’d impedance 

Z DRT Vector of impedance (DRT part only - i.e., R ∞ 

and i ωL 0 terms excluded) 

γ (log τ ) Latent function 

γ Vector of γ (log τ )’s 

ɛ Experimental error 

θ Vector of hyper-parameters, i.e. , θ = 

( σ 2 
n , σ

2 
β
, σ 2 

λ
) � 

μx Mean of x 

μH Mean of Z H 

μDRT Mean of Z DRT 

σ n , exp Standard deviation of the synthetic impedance 

error 

σ n Hyperparameter (standard deviation of the ex- 

perimental error) 

σβ Hyperparameter (norm penalty) 

σλ Hyperparameter (norm of the derivative 

penalty) 

�x Covariance of x 

�H Covariance of Z H 

ω 	 Angular frequency at which one predicts Z H 
ω Vector of angular frequencies 

ω 	 Vector of ω 	 ’s 

optics [35] , and geophysics [36] . Relative to the KK relations, the

HT has far richer mathematical literature, with the availability of

fast HT methods [ 37 , 38 ] and many theoretical results [ 32 , 39 , 40 ]. In

the context of analyzing the consistency of EIS data, we will set

up a new framework, which is named as Bayesian Hilbert trans-

form (BHT). As a first step, the BHT approach uses a linear approx-

imation of the impedance, Z ( ω), with respect to a given basis. In
ther words, we will write Z(ω) = 

∑ 

n 
x n ψ n (ω) , where the ψ n ( ω)’s

re transfer functions and x n ’s are random variables (RVs) endowed

ith a certain probability distribution function (pdf) that will need

o be determined. Here, we will use the ψ n ( ω)’s originating from

he distribution of relaxation times (DRT) and take the x n ’s to be

ormally distributed. After having regressed the x n ’s, we will be

ble to compute Z H ( ω), i.e. , the HT of Z ( ω) using a simple matrix

ultiplication. An important point to note is that both Z ( ω) and

 H ( ω) will be understood as normally distributed RVs. Doing so

ill allow us to use analytical formulas and define a number of

cores that quantify consistency of the real and imaginary parts of

he regressed Z ( ω) against experimental data and with themselves.

The scientific contribution of the paper is twofold. First, we re-

ramed the HT of the EIS data in a general Bayesian context, where

e leverage analytical matrix expressions. This allowed us to de-

ermine the hyperparameters used in the regression by maximizing

he evidence rather than by an ad hoc guess. Second, we proposed

ew ways to score the compliance of Z ( ω) with the HT. These

cores are based on residual plots, mean discrepancies, and “dis-

ances” between the pdfs of Z ( ω) and Z H ( ω). We have also shared

ur code and included some of the developed metrics in DRTtools

41] . We expect that doing so will promote the inclusion of the

T or KK test of EIS data in existing software packages. Lastly, we

ust point out that, despite their importance, the KK relations are

ot widely used in the electrochemistry field. This is perhaps due

o the difficulty in understanding the theory and the availability

f modern software. We hope that our contribution will be instru-

ental in overcoming these two challenges. 

. Theory 

.1. Hilbert transform 

In this section, we briefly define the HT and recall how to link

T to KK relations. For an authoritative review of the topic, inter-

sted readers are invited to consult King’s two-volume book [32] .

he HT on the real line is defined as the operator that transforms

 function f ( ω) into another function Hf ( ω) via the following inte-

ral: 

f ( ω ) = 

1 

π
P 

∞ 

∫ 
−∞ 

f 
(

ˆ ω 

)
ω − ˆ ω 

d ̂  ω (1)

here the symbol P ∫ (·) d ̂  ω denotes the Cauchy principal value,

hich is formally defined as 

 

∞ 

∫ 
−∞ 

f 
(

ˆ ω 

)
ω − ˆ ω 

d ̂  ω = lim 

ε↓ 0 
∫ 

| ω− ˆ ω | >ε 

f 
(

ˆ ω 

)
ω − ˆ ω 

d ̂  ω (2)

Other variants of the HT exist, including the HT on the circle,

he finite HT, the multi-dimensional HT, and the discrete HT [32] .

n this article, we will only use (1). 

Let us recall a few fundamental properties of the HT applied to

he EIS. If f ( z ) is an EIS transfer function with f ( z ) → 0 as z → ∞ ,

hen 

f re ( ω ) = −H f im 

( ω ) (3a)

f im 

( ω ) = H f re ( ω ) (3b)

here f re (ω) = Re ( f (ω) ) and f im 

(ω) = Im ( f (ω) ) are the real and

maginary parts of f ( ω), respectively. We also note that, in the con-

ext of EIS, f re ( ω) and f im 

( ω) are even and odd, respectively [1] .

nforcing one of the two equations in (3) implies that the other is

atisfied [32] . Therefore, meeting (3) is equivalent to fulfilling the

K relations, which are the even and odd HTs [ 1 , 32 ]. 

Lastly, we wish to stress on a notational point. When we have

 function g ( ω, θ) depending on multiple variables and want to
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Fig. 1. Schematic illustration of the Bayesian Hilbert transform method as applied to electrochemical impedance spectroscopy data. 
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ake the HT of g ( ω, θ) with respect to ω, we will explicitly indi-

ate the variable used in the transformation by adding a subscript

nder the H symbol. For example, for g ( ω, θ), we will designate

ith H ω g ( ω, θ) the following: 

 ω g ( ω, θ ) = 

1 

π
P 

∞ 

∫ 
−∞ 

g 
(

ˆ ω , θ
)

ω − ˆ ω 

d ̂  ω (4) 

.2. The Bayesian Hilbert transform of impedance data 

In this section, we describe how the BHT of EIS data is formu-

ated. The BHT methodology is schematically illustrated in Fig. 1 .

he cornerstone of the method is to approximate the impedance

sing a finite expansion over a latent vector x . Then, from x , we

ompute the HT by matrix multiplication. Throughout, we will use

ayesian statistics. That is, we will attach a Gaussian probability

istribution to the regressed impedance and the predicted HT by

ssuming that the latent x follows some prior pdf. Most impor-

antly, we provide a set of scores that gauge how experimental,

egressed, and HT EIS spectra compare to one another. 

.2.1. Approximation 

As outlined in the introduction, we will leverage an expansion

f the impedance on some basis set { ψ( ω, λ)}, where the ψ( ω,

)’s are complex-valued transfer functions dependent on a param-

ter λ such that lim 

ω→∞ 

ψ( ω, λ) = 0 . Explicitly, we will model the

mpedance to be 

 ( ω ) = iωL 0 + R ∞ 

+ 

∫ 
R 

ψ ( ω, λ) γ ( λ) dλ (5) 

here γ ( λ) is some latent function to be determined. Here, we

ill take ψ(ω, τ ) = 

1 
1+ iωτ and λ = log τ to obtain a DRT-like ap-

roximation of the following type [42] : 

 ( ω ) = iωL 0 + R ∞ 

+ 

∞ ∫ 
−∞ 

ψ ( ω, τ ) γ ( log τ ) d log τ (6) 

If the term i ωL 0 is discarded, the HTs of the real or imagi-

ary parts of the impedance can be obtained using H ω ψ( ω, τ ) =
 ψ( ω, τ ) : 

Z ( ω ) = 

∞ ∫ 
−∞ 

H ω ( ψ ( ω, τ ) ) γ ( log τ ) d log τ

= i 
∞ ∫ 

−∞ 

ψ ( ω, τ ) γ ( log τ ) d log τ
(7) 

Explicitly, if we define ψ re ( ω, τ ) = Re ( ψ( ω, τ ) ) = 

1 

1+ ( ωτ ) 2 
and

 im 

( ω, τ ) = Im ( ψ( ω, τ ) ) = − ωτ

1+ ( ωτ ) 2 
, we can write that 

 re ( ω ) = HZ im 

( ω ) = 

∞ ∫ 
−∞ 

ψ re ( ω, τ ) γ ( log τ ) d log τ (8a)

 im 

( ω ) = −HZ re ( ω ) = 

∞ ∫ 
−∞ 

ψ im 

( ω, τ ) γ ( log τ ) d log τ (8b)

Therefore, if we can estimate γ (log τ ) from either Z re ( ω) or

 im 

( ω), then we will be able to obtain Z im 

( ω) or Z re ( ω), respec-

ively, thanks to (8). We must stress that, in the context of this ar-

icle, we will not aim to assign any physical meaning to the (latent)

unction γ (log τ ). Also, if we choose γ ( log τ ) = 

N ∑ 

n =1 

R n τ δ( τ − τn ) ,

here R n is some parameter and δ( τ − τn ) is a Dirac distribution

entered at τ n , we will retrieve the Voigt expansion used else-

here in the context of the KK tests [ 23 , 25 , 29 ]. 

To approximate γ (log τ ) numerically, we expand it over a finite

et of functions B = { φ1 ( log τ ) , φ2 ( log τ ) , . . . , φN ( log τ ) } as 

( log τ ) = 

N ∑ 

n =1 

γn φn ( log τ ) (9) 

here the γ n ’s are scalars. By plugging (9) into (6), we can write

he following two vector equations 

 re = R ∞ 

1 + A γ , re γ (10a)

 im 

= L 0 ω + A γ , im 

γ (10b)

here γ = ( γ1 , γ2 , . . . , γN ) 
� ∈ R 

N and the Z re , Z im 

, 1 , ω ∈ R 

M 

re vectors such that, for 1 ≤ m ≤ M , ( Z re ) m 

= Z re ( ω m 

) , ( Z ) m 

=
im 
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Z im 

( ω m 

) , (1 ) m 

= 1 , and ( ω ) m 

= ω m 

. Explicitly, the entries of the

matrices A γ , re , A γ , im 

∈ R 

M×N are defined as 

(
A γ , re 

)
mn 

= 

∞ ∫ 
−∞ 

ψ re ( ω, τ ) φn ( log τ ) d log τ (11a)

(
A γ , im 

)
mn 

= 

∞ ∫ 
−∞ 

ψ im 

( ω, τ ) φn ( log τ ) d log τ (11b)

We note that these two matrices may be obtained with any of

the methods described elsewhere [ 41 , 43 ]. 

For notational convenience, we will define the following two

matrices: 

A re = 

(
1 , A γ , re 

)
(12a)

A im 

= 

(
ω , A γ , im 

)
(12b)

which allow us to rewrite (10) more compactly in the form 

Z re = A re x re (13a)

Z im 

= A im 

x im 

(13b)

where x re = ( R ∞ 

γ� ) � for (13a), and x im 

= ( L 0 γ� ) � for (13b).

We will suppose that a given EIS experiment is a realization of

the following stochastic process: 

Z exp , re = A re x re + ε re (14a)

Z exp , im 

= A im 

x im 

+ ε im 

(14b)

where the “errors”, ɛ re and ɛ im 

, are two independent Gaussian RVs,

such that ε re , ε im 

∼ N ( 0 , σ 2 
n I ) with I being the M × M identity

matrix. In the ensuing derivation, we will drop the subscripts “re”

and “im” from (14) as the two are notationally identical. 

2.2.2. Bayesian Hilbert transform 

Bayesian methods leverage conditional probabilities. In particu-

lar, we can write that [ 44–46 ] 

p ( x | ω , Z exp ) p ( Z exp | ω ) = p ( x ) p ( Z exp | ω , x ) (15)

where p ( · ) is the pdf of the RV in the brackets, the sym-

bol “|” indicates “conditioned to”, and, again, Z exp is the experi-

mentally measured real or imaginary part of the impedance. The

p(Z exp | ω , x ) can be obtained from (14) as 

p ( Z exp | ω , x ) = p ( ε ) ∝ exp 

(
− 1 

2 σ 2 
n 

‖ Ax − Z exp ‖ 

2 

)
(16)

If we specify a prior on x ( i.e. we assume p ( x )), then we can

obtain p(x | ω , Z exp ) . We will take x ∼ N ( 0 , W 

−1 ) , i.e. , 

p ( x ) ∝ exp 

(
−1 

2 

x 

� Wx 

)
(17)

with the matrix W defined as 

W = 

1 

σ 2 
β

I + 

1 

σ 2 
λ

(
0 0 

0 D 

� 
q D q 

)
(18)

where σ 2 
β

and σ 2 
λ

are two real numbers and D q is the q th order

differentiation matrix [ 41 , 43 ]. 

Plugging (16) and (17) into (15) gives the posterior 

p ( x | ω , Z exp ) ∝ exp 

(
− 1 

2 σ 2 
n 

‖ Ax − Z exp ‖ 

2 − 1 

2 

x 

� Wx 

)
(19)

From the latter, it follows that 

x | ω , Z exp ∼ N ( μx , �x ) (20)
here 

x = 

1 

σ 2 
n 

�x A 

� Z (21a)

x = 

(
1 

σ 2 
n 

A 

� A + W 

)−1 

(21b)

We note that μx and �x are functions of the scalars σ 2 
n , σ

2 
β

, and

2 
λ

, which we will collect in the vector θ = ( σ 2 
n , σ

2 
β
, σ 2 

λ
) � . 

Once the x | Z exp is estimated, we can use (8) to compute Z H ( ω 	 ),

ither −H Z im 

( ω 	 ) or HZ re ( ω 	 ), at a new angular frequency ω 	 as 

 H ( ω 	 ) = hx ∼ N 

(
h μx , h �x h 

� ) (22)

here the column vector h ∈ R 

N+1 is either h re or h im 

defined

ext. We note that ( h re ) 1 = ( h im 

) 1 = 0 , while all other entries (for

 = 1 , 2 , 3 , . . . , N) are 

( h re ) n +1 = 

∞ ∫ 
−∞ 

ψ re ( ω 	 , τ ) φn ( log τ ) d log τ (23a)

( h im 

) n +1 = 

∞ ∫ 
−∞ 

ψ im 

( ω 	 , τ ) φn ( log τ ) d log τ (23b)

More precisely, for the HT of the imaginary part of the data

 Z exp = Z exp , im 

& Z H = Z H , re ) we need to take h = h re . Instead, for

he HT of the real part of the data ( Z exp = Z exp , re & Z H = Z H , im 

) we

eed to set h = h im 

. 

We can rewrite (22) in matrix form as 

 H ( ω 	 ) = Hx ∼ N ( μH , �H ) (24)

here the angular frequency vector is defined as

 	 = ( ω 	, 1 , ω 	, 2 , . . . , ω 	,K ) 
� ∈ R 

K and the Z H ( ω 	 ) =
( Z H ( ω 	, 1 ) , Z H ( ω 	, 2 ) , . . . , Z H ( ω 	,K ) ) 

� ∈ R 

K . Further to that, 

H = H μx (25a)

H = H �x H 

� (25b)

ith the following definition of the matrix H ∈ R 

K× ( N+1 ) 

 ( ω 	 ) = 

⎛ 

⎜ ⎜ ⎝ 

h ( ω 	, 1 ) 
h ( ω 	, 2 ) 

. . . 
h ( ω 	,K ) 

⎞ 

⎟ ⎟ ⎠ 

(26)

The DRT-only part of the EIS spectrum, i.e. , Z 
DRT 

, for which the

esistance and inductance contributions are not considered, can be

btained at ω 	 using 

 DRT ( ω 	 ) = A DRT x (27)

here the A DRT ∈ R 

K× ( N+1 ) is defined following analogous reason-

ng and notation behind (23) and (26). In particular, we will define

he entries of A DRT, re or A DRT, im 

to be 0 in the first column, i.e.

(A DRT , re ) k, 1 = (A DRT , im 

) 
k, 1 

= 0 , and 

( A DRT , re ) k,n +1 = 

∞ ∫ 
−∞ 

ψ re ( ( ω 	 ) k , τ ) φn ( log τ ) d log τ (28a)

( A DRT , im 

) k,n +1 = 

∞ ∫ 
−∞ 

ψ im 

( ( ω 	 ) k , τ ) φn ( log τ ) d log τ (28b)

or k = 1 , 2 , . . . , K and n = 1 , 2 , . . . , N. As above Z DRT ( ω 	 ) is a mul-

ivariate normal, i.e. , 

 DRT ( ω 	 ) ∼ N ( μDRT , �DRT ) (29)
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here μDRT and �DRT are defined as 

DRT = A DRT μx (30a) 

DRT = A DRT �x A 

� 
DRT (30b) 

.2.3. Choosing the hyperparameters 

The analysis described in the previous subsection can be car-

ied out only if the hyperparameter vector θ = ( σ 2 
n , σ

2 
β
, σ 2 

λ
) � is

et [ 44 , 45 ]. To determine it, we will maximize the marginal likeli-

ood (or evidence) [47] , obtained by integrating (or marginalizing)

he likelihood, (16), with respect to the prior: 

p 
(
Z exp | ω , θ

)
= 

∫ 
R 

N+1 
p 
(
Z exp | x , σ 2 

n 

)
p 
(
x | σ 2 

β , σ 2 
λ

)
dx (31) 

As the prior is Gaussian, we can follow classical manipulations

see Section S.1 in Supplementary Information) and obtain [46] 

og p 
(
Z exp | ω , θ

)
= 

1 

2 
log | W | − 1 

2 
log | �−1 

x | − M 

2 
log 

(
σ 2 

n 

)
− E ( μx ) −

M 

2 
log ( 2 π) 

(32) 

In the implementation of the BHT method, the θ maximizing

he experimental evidence is found by minimizing the negative

arginal log-likelihood defined as 

 

(
θ, ω , Z exp 

)
= − log p 

(
Z exp | ω , θ

)
(33) 

n other words 

= argmin 

θ
’ 

L 

(
θ

’ 
, ω , Z exp 

)
(34) 

.3. Scoring the EIS data 

In the scientific literature, there are no metrics that can be

sed to score the compliance of the EIS data with the KK rela-

ions. Therefore, we developed four new metrics based on resid-

als, mean predictions, and distances between estimated distri-

utions. All the scores were defined so that their outcomes are

eal numbers between 0 and 1 (or equivalently 0 and 100%).

n HT-consistent EIS spectrum will score near 1. Instead, an HT-

nconsistent EIS spectrum will score close to 0. 

In the literature about KK relations applied to EIS, the qual-

ty of the impedance data is typically assessed by examining the

esiduals. Such residuals are obtained by subtracting (up to a con-

tant or a linear function of the angular frequency) the experimen-

al real/imaginary data from the HT estimate obtained using the

maginary/real part of the EIS data. One metric could leverage the

esiduals by computing the number of experimental points that lie

ithin k standard deviations of the HT prediction. Such a score can

e formally defined as 

 kσ, re = 

1 

M 

M ∑ 

m =1 

1 ( | R ∞ 

+ Z H,re ( ω m 

) − Z exp,re ( ω m 

) | ≤ kσ ( ω m 

) ) 

(35a) 

 kσ, im 

= 

1 

M 

M ∑ 

m =1 

1 

(| ω m 

L 0 + Z H , re ( ω m 

) − Z exp , im 

( ω m 

) | ≤ kσ ( ω m 

) 
)

(35b) 

here 1( · ) is the indicator function, which is 1 if its argument is

rue and 0 otherwise, σ ( ω m 

) is the standard deviation of the HT

t ω m 

, and R ∞ 

and L 0 are obtained by Bayesian regression from

 exp , re and Z 
exp , im 

, respectively. We note that 0 ≤ s k σ ≤ 1 and

 kσ ≤ s (k +1) σ and that the smaller the residual, the closer the score

ill be to 1. 
The s k σ , re and s k σ , im 

metrics compare data, the realiza-

ion of an RV, and predictions, other RVs. However, other use-

ul scores could compare the two de facto analogous RVs, that

an be obtained from different parts of the data, namely Z H ( ω ) ∼
 ( μH , �H ) and Z DRT ( ω ) ∼ N ( μDRT , �DRT ) . One proposed score,

hich we call s μ, consists in summing 1 to the negative of the

elative distance between the mean vectors μDRT and μH : 

 μ, re = 1 − ‖ μDRT , re − μH , re ‖ 

‖ μDRT , re ‖ + ‖ μH , re ‖ 

(36a) 

 μ, im 

= 1 − ‖ μDRT , im 

− μH , im 

‖ 

‖ μDRT , im 

‖ + ‖ μH , im 

‖ 

(36b) 

From these last two formulas, it follows that 0 ≤ s μ ≤ 1 and

hat the closer is s μ to 1, the more similar the two means μDRT 

nd μH will be. 

Another sensible approach entails comparing the pdf’s of Z H ( ω)

nd Z DRT ( ω). This comparison can be done using some metrics.

ne particularly convenient one is called the Hellinger distance

HD) [48] . The square of the HD, (HD( f, g )) 2 , between two pdfs f ( x )

nd g ( x ) can be defined as 

( HD ( f, g ) ) 
2 = 1 − ∫ 

√ 

f ( x ) g ( x ) dx (37) 

here 0 ≤ HD( f, g ) ≤ 1 and HD ( f, g ) = 0 if and only if f (x ) = g(x ) .

herefore, a viable score could use [48] 

HD 

(
p Z DRT 

, p Z H 
)
( ω 	 ) 

)2 = 1 −
√ 

2 σDRT σH 

σ 2 
DRT 

+ σ 2 
H 

e 
− 1 

4 
( μDRT −μH ) 

2 

σ2 
DRT 

+ σ2 
H (38) 

here p Z DRT 
and p Z H are the pdfs of Z DRT ( ω 	 ) and Z H ( ω 	 ) at the

calar angular frequency ω 	 . We must point out that in (38) the

ependence of μDRT , σ DRT , μH , and σ H on ω 	 has been omitted

or the sake of keeping the equation compact. Similar to what we

id for the residuals, we can define an average HD as follows 

D = 

1 

M 

M ∑ 

m =1 

HD 

(
p Z DRT 

, p Z H 
)
( ω m 

) (39) 

hich allows us to compute two HD scores, s HD, re and s HD, im 

 HD , re = 1 − HD re (40a) 

 HD , im 

= 1 − HD im 

(40b) 

here HD re is the average Hellinger distance between Z DRT, re and

 H, re over ω 	 and HD im 

is the average Hellinger distance between

 DRT, im 

and Z H, im 

over ω 	 . We should stress that while Z DRT, re and

 H, im 

are obtained from the sole real part of the EIS spectrum,

 DRT, im 

and Z H, re are calculated using only the imaginary portion

f the EIS. Therefore, both HD re and HD im 

compare the real part

ith the imaginary part of the EIS data. 

A final metric leverages the Kullback-Leibler (KL) discrepancy or

elative entropy, d KL ( · || · ), which is often used to measure the

egree of similarity between the two pdfs [46] . Unfortunately, we

ere not able to produce a consistent score using the KL diver-

ence alone, because d KL ( · || · ) is neither symmetric nor bounded.

nstead, we will use the Jensen-Shannon divergence (JSD), which

s based on the KL but is symmetric and bounded between 0 and

og 2 [49] . If we define 

 M 

( ω 	 ) = 

1 

2 

( Z DRT ( ω 	 ) + Z H ( ω 	 ) ) (41) 

he JSD between Z DRT ( ω 	 ) and Z H ( ω 	 ) is the following symmetrized

L divergence: 

SD ( Z DRT ( ω 	 ) , Z H ( ω 	 ) ) = 

1 
( d KL ( Z DRT ( ω 	 ) ‖ Z M ( ω 	 ) ) + d KL ( Z H ( ω 	 ) ‖ Z M ( ω 	 ) ) ) (42) 
2 
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Table 1 

Exact EIS responses used for the synthetic experiments. 

Model Z ( f ) Reference Ref. Figures 

ZARC R ∞ + 

R ct 

1+ (i 2 π fτ0 ) 
φ [31] 2-4 

2 × ZARC R ∞ + 

R ct , 1 

1+ (i 2 π fτ1 ) 
φ1 

+ 

R ct , 2 

1+ (i 2 π fτ2 ) 
φ2 

[31] 5-6 

Piecewise Constant (PWC) R ∞ + 

R ct 

ln 
τ2 
τ1 

(
ln 

(
1 − i 

2 π fτ1 

)
− ln 

(
1 − i 

2 π fτ2 

))
[44] 7 

L 0 + ZARC iωL 0 + R ∞ + 

R ct 

1+ (i 2 π fτ0 ) 
φ 8-9 

Failed experiment R ∞ + Re 

(
R ct 

1+ ( i 2 π fτ0 ) 
φ1 

)
+ Im 

(
R ct 

1+ (i 2 π fτ0 ) 
φ2 

)
S1-S2 

Table 2 

Values of the circuit parameters utilized in select synthetic experiments. 

Model R ∞ ( �) R ct ( �) τ0 (s) φ L 0 (H) Ref. Figures 

ZARC 10 50 1.0 0.8 2-4 

2 × ZARC 20 [ 50 , 50 ] [0.1, 10] [0.8, 0.8] 5&6 LHS 

2 × ZARC 20 [ 50 , 50 ] [0.1, 1.0] [0.8, 0.8] 5&6 RHS 

PWC 10 50 [10, 0.1] 7 

L 0 + ZARC 10 50 1.0 0.8 5.0 × 10 −4 8 

L 0 + ZARC 10 50 1.0 [0.8, 1.0] 5.0 × 10 −4 S1-S2 
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As we did above for residuals and HD, the average JSD will be

averaged over the experiment as follows: 

JSD ( Z DRT , Z H ) = 

1 

2 M 

M ∑ 

m =1 

( d KL ( Z DRT ( ω m ) ‖ Z M ( ω m ) ) + d KL ( Z H ( ω m ) ‖ Z M ( ω m ) ) ) (43)

Therefore, we can develop two JSD scores 

s JSD , re = 

log 2 − JSD re 

log 2 

(44a)

s JSD , im 

= 

log 2 − JSD im 

log 2 

(44b)

where JSD re is the average JSD between Z DRT, re and Z H, re and

JSD im 

is the average JSD between Z DRT, im 

and Z H, im 

. Consistently

with what we did for other scores, the s JSD ’s are bounded between

0 and 1 and a s JSD close to 1 implies that Z DRT and Z H are consis-

tent, while if the s JSD nears 0, the two are inconsistent. We must

note that no close formula is known for the JSD, therefore the JSD

was obtained by Monte Carlo sampling. 

3. Results 

3.1. Synthetic experiments 

To benchmark the performance of the BHT method, we tested

it systematically against controlled synthetic experiments with

known standard circuits. In this section, we will illustrate the BHT

framework and the EIS data scoring. The BHT method follows the

logical path shown in Fig. 1 . All circuits studied are reported in

Table 1 with their parameters listed in Table 2 . Consistently with

our earlier articles, the frequency range of analysis was selected to

be between 10 −4 and 10 4 Hz with a resolution of 10 points per

decade [ 50 , 51 ]. We must stress that the experimental impedance

was generated by adding white noise to the real and the imaginary

parts of the exact impedance, consistently with (14) and (16). That

is, given the exact circuit impedance, Z exact (ω) , the experimental

data Z exp (ω) is obtained as follows: 

Z exp ( ω ) = Z exact ( ω ) + ε re + i ε im 

(45)
here ɛ re and ɛ im 

are independent and identically distributed RVs

ith a Gaussian distribution with a mean of 0 and standard devi-

tion σn, exp , i.e. , ε re , ε im 

∼ N ( 0 , σ 2 
n, exp ) . We note that σn, exp is con-

eptually different from σn . While σn, exp is a parameter used to

raw the synthetic experimental data, σn is one of the hyperpa-

ameters optimized by maximizing the evidence. In all synthetic

xperiments, we set σn, exp = 0 . 8 �, a relatively high value for the

iven circuit parameters. 

As a first step, we investigated how the BHT performs for a re-

istor in series with a ZARC element. The corresponding synthetic

mpedance spectrum obtained using (45) is shown in Fig. 2 . The

eal and imaginary parts can be separated and regressed separately

sing (20) to obtain the latent x . In turn, x can be used to obtain

) the regressed and smoothed impedance, Z ; 2) the R 0 - and L 0 -

ubtracted impedance, Z DRT ; and 3) the HT impedance, Z H . The real

nd imaginary parts of the experimental EIS are shown in Fig. 2 (b)

nd (c). In these two panels, the mean impedance (black line) and

he 3 σ credible intervals (solid grey shading) are reported. By vi-

ual inspection, it appears that the artificial experiments fall within

he credible bands. As already outlined above, the hyperparam-

ter vector θ = ( σ 2 
n , σ

2 
β
, σ 2 

λ
) � used to find these estimates was

btained by evidence maximization, which was achieved by find-

ng the minimum of L ( θ, ω , Z exp ) with respect to θ. We plotted

n Fig. 3 the L ( θ, ω , Z exp , re ) , panel (a), and L ( θ, ω , Z exp , im 

) as a

unction of σ
β

and σ
λ

, where in both cases the σn was fixed,

.e. , σn = σn, exp . We can see that the minimum is rather sharp

nd elongated along the σ
λ

direction, indicating a small penalty

n the derivative. Interestingly, for both real and imaginary data,

he minima are obtained for relatively small values of 1 

σ 2 
β

and 

1 

σ 2 
λ

 

1 

σ 2 
β

= 2.93 × 10 −3 and 7.36 × 10 −3 and 

1 

σ 2 
λ

= 1.36 × 10 −3 and

.36 × 10 −3 for the real and imaginary parts, respectively), which

orrespond to a small smoothing penalty, as realized by the matrix

 , on the prior-less term 

1 

σ 2 
n 

A 

� A . After conducting the Bayesian

egression, Z H and Z DRT can be predicted. In particular, upon adding

he R ∞ 

or ωL 0 , the Z H can be compared to the experiments. The

omparison is reported in Fig. 4 (a) and (b) for the real and imag-

nary parts of the EIS, respectively. It is apparent that Z H as ob-

ained from the imaginary (real) part can well recover the real
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Fig. 2. (a) Nyquist plot of the synthetic experimental and exact impedance; the reported numbers indicate frequencies in Hz. (a) real and (b) imaginary parts of the 

impedance and Bayesian regression. Mean and 3 σ credible intervals are shown as a black line and a solid grey region, respectively. 

Fig. 3. Negative of the log-likelihood, L (θ, ω, Z exp ) = − log p(Z exp | ω , θ) , computed for the (a) real and (b) imaginary of the impedance data of Fig. 2 . The σn was set to be 

equal to σn, exp and the minimum is indicated with the star symbol. 
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imaginary) part of the synthetic experiment. This is further con-

rmed by the s μ values, which are in the range of 95%-98%, see

able 3 . An alternative view is given by the residuals, which are

btained by subtracting the experimental data from the mean HT’s

mpedance, μH , plus the offset R ∞ 

or ωL 0 . Fig. 4 (c) and (d) report

he real and imaginary residuals, respectively, together with their

 σ bands (solid gray region). We can observe that all points fall

ithin the grey region, indicating that s 3 σ, re = s 3 σ, im 

= 100%. From

he scores reported in Table 3 , the residual scores are high, sug-

esting that the EIS spectrum is HT- (or KK-) consistent. However,

e note that a visual inspection of the residuals does not yield any

irect information about the distribution of the residuals. There-

ore, we also reported the kernel-estimated densities of the resid-

als in Fig. 4 (e) and (f). There, we observe that the densities are

r  
entered around 0 and endowed with a high degree of symmetry.

urther, as one can see from Table 3 , the s μ, s HD , and s JSD are closer

o 100% rather than 0, suggesting that the estimated distributions

f Z H and Z DRT also match one another. 

We then analyzed two sets of synthetic experiments based on

wo ZARCs (indicated as 2 × ZARC) in series, see Tables 1 and 2 for

he exact impedance and parameters used, respectively. For these

ircuits, it is well known that the latent γ cannot be obtained

asily, especially if the smoothing ( i.e. 1 

σ 2 
λ

) is too strong and the

haracteristic timescales are partially or fully overlapping [ 44 , 45 ].

ig. 5 (a) and (b) report the exact and synthetic EIS spectra of the

wo cases. Fig. 5 (c) and (d) correspond to the regressed imagi-

ary parts. We note that similar regression was also done for the

eal part, see Table 3 , but is not shown for the sake of brevity.
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Fig. 4. (a) real and (b) imaginary part of the HT’s data from Fig. 2 with (c) & (d) residuals and (e) & (f) their distributions also shown. 

Table 3 

Scores obtained for synthetic and real experiments. 

Residual Mean Hellinger Distance Jensen-Shannon Discrepancy Ref. Figures 

Element s 1 σ , re s 2 σ , re s 3 σ , re s 1 σ , im s 2 σ , im s 3 σ , im s μ, re s μ, im s HD, re s HD, im s JSD, re s JSD, im 

ZARC 87.7% 100.0% 100.0% 60.5% 91.4% 100.0% 99.1% 97.6% 57.1% 63.6% 76.8% 79.6% 2-4 

2 × ZARC 74.1% 100.0% 100.0% 66.7% 95.1% 100.0% 99.5% 97.2% 62.6% 60.6% 79.3% 74.4% 5&6 LHS 

2 × ZARC 76.5% 100.0% 100.0% 61.7% 93.8% 100.0% 99.6% 97.6% 61.9% 57.3% 78.8% 71.1% 5&6 RHS 

PWC 71.6% 100.0% 100.0% 64.2% 93.8% 100.0% 99.1% 96.2% 59.1% 56.2% 77.1% 70.5% 7 

L 0 + ZARC 87.7% 100.0% 100.0% 60.5% 91.4% 100.0% 99.1% 97.6% 57.1% 63.6% 76.8% 79.6% 8 

failed exp 54.3% 77.8% 86.4% 39.5% 75.3% 85.2% 95.9% 87.3% 35.1% 31.6% 48.0% 42.2% S1-S2 

DDT-model 88.9% 97.5% 100.0% 75.3% 81.5% 87.7% 99.4% 97.0% 60.5% 55.5% 78.6% 72.0% S9 

Li 3 N 44.4% 92.6% 96.3% 75.3% 84.0% 86.4% 98.8% 97.7% 20.9% 55.6% 29.1% 67.4% S10 

LIB 94.1% 98.0% 100.0% 47.1% 80.4% 100.0% 99.3% 95.2% 81.0% 36.2% 93.1% 46.0% S11 

SOFC 100.0% 100.0% 100.0% 84.0% 98.8% 100.0% 99.7% 98.9% 67.4% 52.2% 86.5% 67.3% 11 

2H MoS 2 91.5% 97.9% 100.0% 76.6% 85.1% 93.6% 99.7% 99.0% 82.7% 68.3% 92.4% 80.0% 12 

Si NC 92.6% 98.1% 98.1% 40.7% 63.0% 79.6% 99.5% 98.7% 57.6% 29.6% 77.3% 38.2% S12 
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Fig. 5. Nyquist plot of the impedance response of two ZARC elements in series with (a) partially and (b) fully overlapping features; the reported numbers indicate frequencies 

in Hz. (c) and (d) imaginary part of the EIS spectrum as a function of the frequency and corresponding to the Nyquist plots in panels (a) and (b), respectively. 
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efore discussing Fig. 6 , we must point out that the panels (a) &

c) and (b) & (d) of Fig. 5 correspond to (a), (c) & (e) and (b), (d)

 (f) in Fig. 6 . The obtained HT’s impedances, Z H , are plotted in

ig. 6 (a) and (b). Both Z H match well the synthetic experiment,

eading to s μ ≈ 100%. Similarly, we plotted residuals and their

istributions in Fig. 6 (c) & (e) and (d) & (f). Unsurprisingly, the

esults are consistent with expectations that the residuals should

all within the 3 σ bands with rather symmetric distributions. As

hown in Table 3 , all scores confirm the built-in consistency of the

IS spectrum. 

We also applied the BHT method to the piecewise constant

PWC) element. This element is somewhat pathological because

he exact γ is discontinuous and therefore requires ad hoc regu-

arization [ 44 , 45 ]. We report in Fig. 7 (a) the exact and synthetic

IS of the PWC element and in Fig. 7 (b) the regressed imaginary

art. The Z H, im 

, reported in Fig. 7 (c), which was obtained with

he data of Fig. 7 (b), matches the experiment well. Furthermore,

he residuals, shown in Fig. 7 (d), appear to be well within the 3 σ
redible interval with the underlying distribution being character-

zed by some degree of symmetry. The scores, see Table 3 , are also

onsistent with the visual analysis and indicate, as expected, that

he data comply with the HT. 

The synthetic experiments illustrated above assumed that there

as only one resistor in the series being connected to the main el-

ments. However, inductive features could also be present in the

IS data. These inductances could be modeled by adding a ωL 0 
erm to the imaginary part of the impedance, see (5). While the

T of a constant is formally 0, the HT of ωL 0 is infinite [32] . There-

ore, the inductance component needs to be subtracted from the

mpedance data at the regression stage and added later. This is a

elicate issue that the BHT method can handle. We show that in

ig. 8 (a), where an inductor is added to the circuit of Fig. 2 (a), see

able 2 for the parameter values. Not only could our framework re-

over the imaginary part of the impedance, as shown in Fig. 8 (b),

ut it also reliably retrieved an HT of the data that matched the

xperiments well. This consistency is shown in the prediction and

esidual plots in Fig. 8 (c) and (d), respectively, and in all computed
cores, see Table 3 . One may also wonder how well the BHT would

o in retrieving the mean values of the circuit parameters, i.e., R ∞ 

nd L 0 , and the σn, exp from θ. We tested that by carrying out 20 0 0

rtificial experiments, for which the θ’s were obtained by maxi-

izing the evidence. The resulting mean values of R ∞ 

and L 0 and

he corresponding σn = ( θ) 1 are shown in Fig. 9 as a joint distri-

ution plot. The values obtained deviate little from their externally

ssigned values, see Table 2 , showing little correlation to one an-

ther. One important point to note is that, while these point esti-

ates did not comply with the Bayesian philosophy, we think it is

mportant to highlight that the BHT methodology developed here

onsistently retrieves the ground truth of the studied synthetic ex-

eriments. 

Furthermore, we wished to determine if the BHT could detect

nconsistent impedance data. As a first example, we used a circuit

omposed of two slightly different transfer functions for the real

nd the imaginary parts. The actual model is shown in the last

ow of Table 1 , and the parameters can be found in Table 2 . The

yquist plot of such an artificial impedance is shown in Fig. S1 (a).

n this specific case, the exact impedance is not a transfer function,

nd therefore, the HT is expected to detect that. In other words, if

e performed HT on Z re ( ω), we would not be able to obtain Z im 

( ω)

nd vice versa. The inconsistency of the data is not apparent if the

eal and the imaginary parts of the EIS are regressed using the BHT,

ee Fig. S1 (a) and (b). On the other hand, the HTs in Fig. S2 (a)

nd (b) show a significant deviation from the experimental data.

his discrepancy is even more evident if one looks at the residuals,

hich are bimodally distributed, see Fig. S2 (c) and (d). Further,

ll scores in Table 3 are lower than that of the previous synthetic

xperiments, indicating a decreased reliability and inconsistency in

he data. 

As a second example, we used frequency-dependent drift on

 given EIS parameter to model deviations from an ideal trans-

er function. We showed the BHT and corresponding scores were

ble to detect that the EIS data is inconsistent as a consequence

f the drift. To generate the EIS spectra, we employed the same

aseline 2 × ZARCs impedance model illustrated above (see the
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Fig. 6. (a) and (b) imaginary part of the HT’s data with (c) & (d) residuals and (e) & (f) their distributions also shown. The left-hand and right-hand sides in this figure 

correspond to the left-hand and right-hand sides of Fig. 5 . 
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second lines of Tables 1 and 2 ). The low-frequency drift function,

ζ ( ω, ρ) = 

1 
log ω max 

ω min 

log ( 
ω ρmax ω 

1 −ρ

ω min 
) , multiplied R ct, 2 as follows 

R ct , 2 ( ω ) = R ct , 2 ζ ( ω, ρ) (46)

where ω max and ω min are the highest and the lowest angular fre-

quencies, respectively, and ρ is a number between 1 and 1.5; ρ = 1

indicates no drift, i.e. , no deviation from ideality. The real and

imaginary parts of the exact impedance are shown in Fig. 10 (a)

and (b). Fig. S3 (a), (b), and (c) show the Nyquist plot and real

and imaginary parts of select synthetic EIS spectra, respectively.

Using 10 0 0 synthetic experiments for each ρ , we computed the

average s̄ = 

s re + s im 

2 of the scores described in Section 2.3 . As shown

in Fig. 10 (c), all the scores, except for s̄ μ, decrease as ρ increases.

This trend is consistent with the intuition that increasing the drift

will increase the inconsistency in the impedance data and there-

fore decrease s̄ . Additionally, we report regression and prediction

results as well as the residuals for ρ = 1 . 5 and σn, exp = 0 . 1 , 0 . 8 ,
nd 1.6 � in Figs. S4, S5, S6. Inconsistency between the real and

maginary part of the synthetic data can be observed by comparing

ith the BHT prediction with the real part shown in the panels (c).

he residual plots in the (d) panels of these figures correctly indi-

ate severe non-stationarity at low frequencies, with the credible

ands increasing as σn, exp increases. 

As a third example, we used the model of Murer and co-

orkers [52] , which consists of an RC impedance with a time-

rifting polarization resistance: 

 ( ω ) = R � + 

R p ( t ) 

1 + iωR p ( t ) C dl 

(47)

here R � = 50 �, R p (0) = 500 �, t( f n ) = 

n ∑ 

k 

1 
f k 

, C dl = 2 × 10 −2 F ,

nd R p (t) = R p (0) − k −
√ 

t with k − = 1 . 5 �√ 

s 
or R p (t) = R p (0) + k + t 2 

ith k + = 5 × 10 −6 �
s 2 

for the time-decreasing or time-increasing

olarization resistance, respectively. The corresponding Nyquist
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Fig. 7. (a) Nyquist plot of the EIS response of a PWC element; the reported numbers indicate frequencies in Hz. (b) The imaginary part of the EIS spectrum with Bayesian 

regression. (c) BHT of the Z exp, im and (d) corresponding residuals vs. frequency. 

Fig. 8. (a) Nyquist plot of the EIS response of a ZARC element in series with a resistor and an inductor; the reported numbers indicate frequencies in Hz. (b) The imaginary 

part of the EIS spectrum with Bayesian regression. (c) BHT of the Z exp, im and (d) corresponding residuals vs. frequency. 
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Fig. 9. Distribution of the optimal σ n as obtained by evidence maximization and regressed R ∞ and L 0 , the (a) imaginary and (b) real parts of the EIS spectrum were used 

to obtain these plots. 

Fig. 10. (a) Real and (b) imaginary parts of the impedance of 2 × ZARCs model with a ρ-dependent drift on R ct, 2 . (c) Re-im averaged scores, i.e. , s̄ = 

s re + s im 
2 

. The lines and 

grey bands indicate the average and 1 σ intervals as obtained from 10 0 0 synthetic experiments. 

 

 

 

 

 

 

d  

o  

t

 

B  

b  

w  
plots are shown in Fig. 11 (a) (decreasing) and (b) (increasing)

where the reference spectrum with R p (t) = R p (0) , the drifting

noiseless impedance, and stochastic experiments with σn, exp = 3 �

are presented. After regressing real and imaginary parts of the

spectra, see panels (a) and (b) of Fig. S7 and Fig. S8, we computed

the HT and compared that to the imaginary and real parts of the

spectra as shown in panels (c) and (d) of Fig. S7 and Fig. S8. The
eviations, present in the residuals displayed in panels (c) to (f)

f Fig. 11 , indicate that the BHT method can correctly capture the

ime drift in the underlying EIS data. 

As the last set of synthetic experiments, we also studied if the

HT approach developed could be used to test if EIS data from

atteries and supercapacitors are HT-compliant. To be consistent

ith the theory above, we applied the BHT to the admittance de-



J. Liu, T.H. Wan and F. Ciucci / Electrochimica Acta 357 (2020) 136864 13 

Fig. 11. (a) and (b) Nyquist plots of the time-drifting impedance. BHT residuals computed using the (c) & (d) real and (e) & (f) imaginary parts of the impedance data. The 

left- and right-hand-side panels correspond to time-decreasing and time-increasing polarization resistance, respectively. 
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e  

s  

t  

f  

f  

f  

s  

n  

i  

s  

F  

e  

S

i  
ned as Y (ω) = 1 /Z(ω) . More details can be found in Section S.2

f the SI. We first evaluated the synthetic data obtained using the

DT (distribution of diffusion times) model [ 53 , 54 ], see Section S.3

or details. The admittance of the real part and the imaginary part

s obtained by BHT are shown in Fig. S9 (c) and (d); both match

ell the synthetic experiments. Additionally, the residual points

nd their distributions are shown in Fig. S9 (e) and (f). All residuals

enter near 0 with a seemingly unimodal distribution, suggesting

hat the EIS data are consistent. The scores listed in Table 3 also

upport this conclusion. As a second example, we generated the

ynthetic impedance of a Li 3 N battery [55] with the frequencies

elected in the range from 18 Hz to 4 × 10 5 Hz. The Nyquist plots

f the impedance and corresponding admittance are shown in Fig.

10 (a) and (b), respectively. The admittance predicted by the BHT

s reported in Fig. S10 (c) and (d). While a good match can be

bserved for f ≤ 7 × 10 4 Hz, above that threshold, a small dis-

repancy appears. The residuals shown in Fig. S10 (e) and (f) also
eflect this deviation. c  
.2. Real experiments 

The analysis of the BHT method would be incomplete if real

xperiments were not analyzed. For this reason, we examined two

ets of experimental data that had been used in our prior publica-

ions [ 43–45 ]. First, we tested the BHT against the data obtained

rom a commercial battery [ 43 , 45 ]. The EIS spectrum was collected

rom a LiCoO 2 battery (Ansmann 18650) at a 25% state of charge

rom 5 mHz to 600 Hz with 10 points per decade. The impedance

pectrum is drawn in Fig. S11 (a). We first estimated the imagi-

ary part of the spectrum using Bayesian regression. The estimated

mpedance data shows little deviation from the experimental mea-

urement and falls within an extremely narrow credible band, see

ig. S11 (b). For the obtained Z H, re , the credible band only slightly

nlarges to be observable and the deviations are still small, see Fig.

11 (c). We further plotted the discrepancy between Z H and Z exp 

n Fig. S11 (d), where clear deviations appear only at low frequen-

ies for f ≤ 10 −2 Hz. The distribution of residuals reflects this in-
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Fig. 12. (a) Nyquist plot of the BLFP|SDC|BLFP SOFC and (b) its regressed imaginary part; the reported numbers in (a) indicate frequencies in Hz. (c) BHT of Z exp, im and (d) 

corresponding residuals vs. frequency and their distribution. 
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sight and is centered at the origin with small dissymmetric fringes

around it. The scores in Table 3 also support the above assessment

and suggest that the quality of the imaginary part of the spectrum

is likely to be better than that of the real part. 

We also analyzed an EIS spectrum obtained from a symmetri-

cal solid oxide fuel cell (SOFC) with 15% Sm-doped CeO 2 (SDC) as

the electrolyte and Ba 0.95 La 0 . 05 Fe 0.95 P 0.05 O 3 −δ (BLFP) as the elec-

trode [56] . The impedance data were obtained at 700 °C under a

synthetic air atmosphere (a mixture of N 2 and O 2 in a 0.79:0.21

ratio) and a total pressure of 1 atm. The EIS measurement was

conducted in a frequency ranging from 0.1 Hz to 2.47 × 10 4 

Hz with 15 points per decade, as reported in Fig. 12 (a). While

we performed BHT regression for both the real and the imagi-

nary part of the experimental data, we only show the analysis

of Z exp, im 

. As shown in Fig. 12 (b), Bayesian regression is capa-

ble of capturing the imaginary part well with no notable dis-

crepancy and a credible band too narrow to be observable. The

high quality of the data is evident from Fig. 12 (d), where a re-

markably good match is observed between the R ∞ 

+ Z H , re and the

Z exp, im 

. We further show the residual between these two terms in

Fig. 12 (d). One can notice that the residuals are unimodally dis-

tributed with the center of the distribution placed near the origin.

The high quality of the impedance data is further confirmed by the

scores listed in Table 3 , which indicate strong compliance with the

HT. 

We also tested the validity of the BHT approach developed

against experimental battery data, where, as above, the analysis

was done on the admittance. As a first example, we used data

taken from a MoS 2 -based battery [57] . The Nyquist plot of the

EIS spectrum is shown in Fig. 13 (a) with the corresponding ad-

mittance in Fig. 13 (b). As shown in Fig. 13 (c) and (d), the BHT

can retrieve the experimental data reliably, suggesting consistency.

This is further confirmed by the residual plots, see Fig. 13 (e) and
 o  
f), which are unimodally distributed and centered around the ori-

in. The obtained scores, see Table 3 , also support the conclusion

hat the admittance of the MoS 2 is HT-consistent. Another exam-

le is that of a silicon-nanowire-based lithium-ion battery [58] .

ig. S12 (a) and (b) show the Nyquist plot of the impedance and

orresponding admittance. One can observe that the BHT’d admit-

ance matches the experimental data well, see Fig. S12 (c) and (d).

he residuals have unskewed distributions with their means lo-

ated near the origin. The scores are also HT-consistent and indi-

ate good data quality. 

. Conclusions 

Compliance with the HT or the KK relations is a cornerstone of

IS analysis. While this is an important and generally appreciated

act, practitioners rarely test their data for that. In this article, we

im at bridging this gap by putting forward two innovations. First,

e reframed the HT in a probabilistic Bayesian framework. Doing

o allowed us to identify the credibility of the HT’d EIS data and, in

urn, use that credibility to compare predictions. Second, we estab-

ished several criteria to score the impedance data. We assigned a

core value between 0 and 1, where the higher the score, the bet-

er the experimental impedance Z ( ω) compliance with the HT. The

cores were developed by leveraging residuals, distances between

he means, and probabilistic discrepancies between predictions. By

pplying the BHT to the admittance, we established that it could

e used to analyze unbounded EIS spectra typical of batteries and

upercapacitors. 

Various research topics could expand on this work. The basis

et used here could be further extended to include spectral and

seudo-spectral elements, e.g. , radial-basis functions, to improve

ccuracy. Also, more metrics may be developed to score the quality

f EIS against the KK relation or HT. Furthermore, new standard-
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Fig. 13. Nyquist plot of the (a) EIS response of sodium-ion battery with 2H-MoS 2 as the anode [57] and (b) corresponding admittance; the reported numbers indicate 

frequencies in Hz. BHT of (c) Y exp, im and (d) Y exp, re shown vs. frequency and compared with experimental data (c) Y exp, re and (d) Y exp, im , respectively. (e) and (f) residuals 

and their distributions. 

i  

g  
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a  

t  

u  

w  

c  

o

zed test cases and procedures may be proposed to benchmark al-

orithms that assess the compliance of EIS data with the HT or KK

elations. 

Sharing our source code may prove to be useful to researchers

nd speed up innovations in this area. We also added related func-
ionalities to the DRTtools with the intent of releasing an easy-to-

se HT package to the entire electrochemical community. Lastly,

e wish to emphasize that by formalizing a BHT method, this arti-

le may revive research in the area and promote the benchmarking

f the EIS data consistency by HT or KK relations. 
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