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a b s t r a c t

Electrochemical impedance spectroscopy (EIS) is one of the most important techniques in electro-
chemistry. However, analyzing the EIS data is not a simple task. The distribution of relaxation times
(DRT) method offers an elegant solution to this considerable challenge. In addition to that, the DRT
method can be used to obtain the time characteristics of the electrochemical system under study.
Though, deconvolving the DRT from the EIS data is an ill-posed problem, which is particularly sensitive to
experimental errors. Several well-known approaches, including ridge regularization, can overcome this
issue but they all require the use of ad hoc hyperparameters. Furthermore, most methods are not
probabilistic and therefore do not provide any uncertainty on the estimated DRT. In this work, by
assuming that the DRT is a Gaussian process (GP), it is not only possible to obtain the DRT mean and
covariance from the EIS data but also to predict both the DRT and the imaginary part of the impedance at
frequencies not previously measured. One important point to note is that, unlike other methods, the
parameters that define the GP-DRT model can be selected rationally by maximizing the experimental
evidence. The GP-DRT approach is tested using synthetic experiments for analyzing the consistency of
the method and “real” experiments to gauge its performance for real data. The GP-DRT model is shown to
be able to manage considerable noise, overlapping timescales, truncated data, and inductive features.
Considering the GP-DRT framework developed and the results of the simulations, the GP-DRT will likely
inspire further studies on using a probabilistic approach to interpret EIS data.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Electrochemical impedance spectroscopy (EIS) is one of the
most commonly used characterization techniques in the field of
electrochemistry [1e7]. EIS experiments have been used to un-
derstand the physicochemical processes taking place in numerous
electrochemical systems (ECSs), including fuel cells [8e14], batte-
ries [15e21], solar cells [22,23], and supercapacitors [24]. EIS has
also been used in other fields including biology [25e27] and
medicine [28,29]. The EIS spectrum is particularly useful because it
of Science and Technology,
g, Clear Water Bay, Sai Kung,

.

contains time-dependent information and covers a broad span of
timescales, allowing the recovery of many physical properties, such
as diffusion coefficients and reaction rate constants [4,30]. During
an EIS measurement, the ECS is subjected to a small sinusoidal
perturbation in current/bias, and concomitantly the resulting bias/
current is recorded [2,5,7]. At a given frequency, the impedance is
obtained from the ratio and the dephasing of the bias/current. To
obtain the full EIS spectrum, this procedure is repeated over a broad
range of frequencies, usually, from mHz to MHz.

Despite the EIS technique being highly effective, interpreting the
EIS data can be challenging [31]. To that end, equivalent circuit
models (ECMs) [2,5] are often used. However, ECMs have significant
limitations. First, they are often chosen in an ad hoc fashion and
often are just circuit analogs [32]. Second, they are not unique. It is
not uncommon to encounter situations where multiple plausible
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ECMs can fit the EIS data equally well [33]. Compared to selecting
ad hoc ECMs, physical models are far more informative of the actual
electrochemical processes taking place in the ECS under study
[6,22,34e44]. However, physical models are not used as often as
ECMs because, as they are system-specific, they require consider-
able implementation work.

To overcome the challenges mentioned above, the distribution
of relaxation times (DRT) has recently attracted significant research
attention [45e50]. The idea behind the DRT is to deconvolve the EIS
spectrum into a distribution of timescales. This is useful because
the time scales can be used to guide the design of ECMs [45] or to
identify different physical processes [10,51e56]. The DRT model
assumes that the voltage response of an ECS to a step current
perturbation decays exponentially with a particular distribution of
timescales [46,48]. It can be shown that, if this hypothesis holds,
then the impedance can be written as

ZDRTðf Þ¼ i2pfL0 þR∞ þ
ð∞
�∞

gðlog tÞ
1þ i2pf t

d log t (1)

where L0 is an inductance, R∞ is a resistance, f is the frequency, and
gðlogtÞ is the DRT, which is a function that determines the time-
scale distribution [10].

Deconvolving the DRT from the EIS data is not simple because
one needs to solve an inverse problem, which is ill-posed
[45,49,57]. That is, its solution is particularly sensitive to experi-
mental errors. A variety of numerical frameworks have been
developed to resolve ill-posedness and have leveraged methods as
diverse as Fourier transform [50], maximum entropy [58], frac-
tional algebraic identification [59], Monte Carlo sampling [60],
genetic algorithms [61e63], ridge regression (RR) [47e49,57,64],
and elastic-net regularization [65]. One case of particular interest is
ridge regression because the DRT deconvolution can be recast as a
constrained quadratic programming problem, which solves
arg minx�0

�XN
n¼1

�
w0

n

�
Zexpre ðfnÞ � ZDRTre ðx; fnÞ

�2 þw
00
n

�
Zexpim ðfnÞ � ZDRTim ðx; fnÞ

�2��
þ l k Lxk2 (2)
where w0
n and w

00
n are suitable weights, Zexpre and Zexpim are the real

and imaginary part of the experimental impedance, respectively, fn
is the nth frequency, x is an unknown vector that represents the
DRT, and lLx2 is a regularizing term weighted by the hyper-
parameter l where L is a suitable differentiation matrix. While the
RR can be recast in Bayesian context to recover the DRT and its
uncertainty, the choice of the hyperparameter(s) is arbitrary and
the only available method is cross-validation [57]. Furthermore, the
DRT model has been only used to fit the experimental EIS data and
has yet to be used to predict the EIS at frequencies other than the
ones measured. This may prove useful in situations where experi-
mental limitations may prevent measurements at certain fre-
quencies (e.g. low frequencies because of time limitations or high
frequencies because of instrument limitations) [66].

To overcome the difficulties inherent to selecting hyper-
parameters and predicting EIS values at unmeasured frequencies,
we develop the GP-DRT method. This new method leverages
Bayesian statistics and, specifically, Gaussian processes (GPs).
Instead of deconvolving the DRT to obtain a simple curve using (2),
we interpret the DRT as a GP. It is important to note that GPs in the
context of machine learning provides a non-parametric approach
for inferring functions from data. Therefore, a GP can be viewed as a
Bayesian prior over a functional space [67,68]. First, we assume that
the DRT, gðlogtÞ, is an unseen (or latent) GP. Second, we note that
gðlogtÞ gives the impedance following (1). Using the property that
GPs are closed under linear transformations [67,69], the obtained
ZDRTðf Þ is also a GP. Leveraging the last two properties, we will
conduct regression and prediction.

In the following sections, wewill first definewhat GPs are. Using
GP regression, we will recover and predict the DRT and the
impedance. For all practical purposes, we will use multivariate
Gaussian random variables (RVs) to correlate gðlogtÞ, ZDRTðf Þ, and
the experimental data. An extremely important point to note is that
the hyperparameters do not need to be guessed. Instead, these
parameters are obtained by maximizing the experimental evi-
dence, that is, the probability that the experimental result is ob-
tained under the assumptions of the GP model. Furthermore,
synthetic experiments as well as “real” experiments show that the
GP-DRT model can recover both the DRT and the imaginary part of
the impedance well. Lastly, we point out the strengths and weak-
nesses of the GP-DRT approach and propose future research
directions.
2. Theory

2.1. Gaussian processes

2.1.1. Basics
A Gaussian process (GP) can be loosely defined as an infinite

collection of RVs, such that every finite subset of these variables
follows a multivariate normal distribution [67,68]. Here, we focus
on regression and prediction, as is typical of machine learning and
assume that the function we wish to learn is a GP. Both GP
regression and prediction are Bayesian methods [70]. One should
note that such methods are not the same as the frequentist ap-
proaches more commonly used in the electrochemical field
[2,4,7,32], where one simply fits a model such as an equivalent
circuit or a physical model, to the experimental data to obtain an
estimate of a parameter. In fact, being Bayesian, the GP-DRT pro-
vides the probability distribution function of gðlogtÞ given the
experimental observations.

Let us be more formal and consider gðxÞ as a GP with a mean
function mðxÞ and a covariance (or kernel) function kðx;x0Þ, i.e.,

gðxÞ � G P ðmðxÞ; kðx;x0ÞÞ (3)

where x and x0 both are input points. We remark that
mðxÞ ¼ E½gðxÞ� and that kðx; x0Þ ¼ E½ðgðxÞ �mðxÞÞðgðx0Þ �mðx0ÞÞu�,
where E½ ,� is the expectation. If we initially assume mðxÞ ¼ 0
[67,68,70] and take N experimental observations at x1; x2;…; xN ,
then (3) defines a joint Gaussian distribution pðgðx1Þ;…; gðxNÞÞ
given by

pðgðx1Þ;…; gðxNÞÞ¼N ð0;KÞ (4)

where N ð0;KÞ is the Gaussian or normal probability distribution
function with zeros mean and covariance K. K is defined as ðKÞij ¼
kðxi;xjÞwith i; j ¼ 1;2;/;N or as a shorthand K ¼ kðX;XÞwith X ¼
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ðx1;x2;…;xNÞ.
For a given measured dataset D ¼ fðxn; ynÞ; n ¼ 1;2; …; Ng,

where the observation yn is the realization of gðxnÞ, we can calcu-
late the posterior, i.e., the probability of g known the data y ¼
ðy1;/; yNÞu. More specifically, it can be supposed that the
observed dataset D has noise ε � N ð0;s2nÞ, such that yn ¼ gðxnÞþ
ε. Our goal is to predict gðx+Þ, the value of the GP gðxÞ at an un-
observed point x+. Following the definition of GP, y and gðx+Þ are
correlated and have a joint multivariate Gaussian distribution:�

y
gðx+Þ

	
� N

 
0;

 
Kþ s2nI k+

ku
+ k++

!!
(5)

where ðk+Þn ¼ kðx+; xnÞ or k+ ¼ kðx+;XÞ, k++ ¼ kðx+;x+Þ, and I is
the identity matrix. As y is known from the dataset D , the proba-
bility distribution function of gðx+Þ conditioned on y has the
following expression [68], see Appendix A:

pðgðx+Þjx+;X; yÞ¼N ðmx+
;Sx+

Þ (6)

with

mx+
¼ku

+

�
Kþ s2nI

��1
y (7a)

Sx+
¼ k++ � ku

+

�
Kþ s2nI

��1
k+ (7b)

Therefore, this procedure allows the prediction of gðx+Þ as a
normal RV with mean mx+

and covariance Sx+
.

2.1.2. Linear transformations of Gaussian processes
One useful property that will be exploited is that GPs are closed

under linear transformations [67,69]. This implies that, if a linear
functional1 L xð,Þ is applied to gðxÞ, then L xðgðxÞÞ is also a GP. In
particular, if gðxÞ is defined as in (3), then

L xðgðxÞÞ � G P ð0;L xðL x0 ðkðx; x0ÞÞÞÞ (8)

and�
gðxÞ

L xðgðxÞÞ
	

� G P

�
0;
�

kðx; x0Þ L x0 ðkðx; x0ÞÞ
L xðkðx; x0ÞÞ L xðL x0 ðkðx; x0ÞÞÞ

		
(9)

2.2. The DRT formulation

Here the DRT model given in equation (1) is reformulated so as
to exploit the properties illustrated in Section 2.1.2. It should again
be noted that the DRT framework rests upon the assumption that
we can model the impedance ZDRTðf Þ as [46,48]

ZDRTðf Þ¼ i2pfL0 þR∞ þ
ð∞
0

1
1þ i2pf t

gðtÞ dt (10)

where gðtÞ is a timescale distribution [10] and gðlogtÞ ¼ tgðtÞ.2
The EIS is usually measured with the frequencies spanning

across several orders of magnitude, typically from mHz to MHz.
Therefore, it is natural to define the log-frequency x ¼ log f ¼ �
1 A functional is a function that has as input a function and as output a number.
2 We note that we use the logð,Þ improperly and we should understand that both

f and t are dimensionless variables.
log t, so that (1) can be rewritten as

ZDRTre ðxÞ¼R∞ þ
ð∞
�∞

1

1þ ð2pex�bxÞ2 gðbxÞ dbx (11a)

ZDRTim ðxÞ¼2pfL0 �
ð∞
�∞

2pex�bx
1þ ð2pex�bxÞ2 gðbxÞ dbx (11b)

We indicate gðxÞ as the DRT, which is interchangeably denoted
with a notational abuse as gðxÞ, gðlogtÞ, or gðlogf Þ. We must stress
that to keep the notation compact we will use x in the ensuing
formulas. A similar abuse of notationwill be used for ZDRTðf Þ, which
is interchangeably indicated as ZDRTðf Þ or ZDRTðxÞ. Without loss of
generality [71], we will start our discussion by dropping drop R∞
and L0 to rewrite (11) as follows:

ZDRTðxÞ¼L re
x ðgðxÞÞ þ iL im

x ðgðxÞÞ (12)

where the two functionals L re
x ð,Þ and L im

x ð,Þ are defined as

L re
x ð,Þ¼

ð∞
�∞

1

1þ ð2pex�bxÞ2 ð,Þ dbx (13a)

L im
x ð,Þ¼ �

ð∞
�∞

2pex�bx
1þ ð2pex�bxÞ2 ð,Þ dbx (13b)
2.3. The GP distribution of relaxation times (GP-DRT)

In this section we recast the DRT model probabilistically using
GPs. As already outlined above, we assume that gðxÞ is a latent GP.
Formally, as the functionals defined in (13) to gðxÞ are applied,
ZDRTðxÞ is generated via (12). As reported in Section 2.1.2, it follows
that ZDRTðxÞ is also a GP because GPs are closed under linear
functionals [67,69], and since ZDRTðxÞ is derived from gðxÞ, the two
are correlated. Within this modeling framework, if the impedance
data at certain frequencies is given, then one can estimate the latent
(or hidden) variable gðxÞ at those frequencies. Since gðxÞ and
ZDRTðxÞ are correlated GPs, one can predict both the DRT and the
impedance at any new log-frequency x+. We should note that the
GP-DRTapproach has several advantages over other DRT regression
methods because:

1. We can use the GP-DRT to conduct prediction. In other words,
the mean and standard deviation of both impedance and DRT
can be computed at frequencies other than those measured
experimentally;

2. The hyperparameters of the GP-DRT model can be selected
rationally by maximizing the experimental evidence as will be
discussed in Section 2.3.4.

For technical reasons, which will be illustrated at the end of this
section, we will only use the imaginary part of the impedance to
estimate the DRT and to perform predictions. From a practical
perspective, we will leverage multivariate Gaussian RVs, especially
their conditioning and marginalization. Several useful properties of
multivariate Gaussians are given in Appendix A, which the reader is
recommended to read.
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2.3.1. Basics
We start by considering the imaginary part of the impedance

and the corresponding functional (13b). First, we assume that gðxÞ
is a GP defined as

gðxÞ � G P ð0; kðx; x0ÞÞ (14)

Since ZDRTim ðxÞ ¼ L im
x ðgðxÞÞ, see (12), it follows that both gðxÞ and

ZDRTim ðxÞ are GPs with

 
gðxÞ

ZDRTim ðxÞ

!
� G P

0@0;

0@ kðx; x0Þ L im
x
0 ðkðx; x0ÞÞ

L im
x kðx; x0Þ L im

x
0

�
L im

x ðkðx; x0ÞÞ
�1A1A

(15)

It is then supposed that the measured impedance is affected by
random errors, i.e.,

Zexpim ðxÞ¼ ZDRTim ðxÞ þ ε (16)

where ε � N ð0; s2nÞ. All errors are taken to be independent and
identically distributed (i.i.d.). Furthermore, we assume to have N
observations, which are entered in a random vector ðZexp

im Þn ¼
Zexpim ðxnÞwith xn ¼ logfn and n ¼ 1;2;…N. The latent variable at the

measured frequencies x ¼ ðx1; x2;…xNÞu is taken to be a random
vector such that ðgÞn ¼ gðxnÞ. Therefore, from (15) and (16), we can
write following a line of reasoning similar to the one illustrated in

Section 2.1.1 that ðg;Zexpim Þu is a multivariate Gaussian RV, i.e., 
g

Zexpim

!
� N

 
0;

 
K L imK

L ♯
imK L 2

imKþ s2nI

!!
(17)

where I is an N � N identity matrix, and the matrices K, L imK,
L 2

imK 2RN�N are defined as follows (n;m ¼ 1;…;N):

ðKÞnm ¼ kðxn; xmÞ (18a)

ðL imKÞnm ¼



L im

x
0 ðkðx; x0ÞÞ




jxn;xm (18b)

�
L ♯

imK
�
nm ¼




L im
x ðkðx; x0ÞÞjxn;xm (18c)

�
L 2

imK
�
nm

¼



L im

x
0

�
L im

x ðkðx; x0ÞÞ
�
jxn;xm (18d)

From (18) and with an abuse of notation already used in this
section, we can define the following matrix-valued functions (see
Appendix B for details):

K¼Kðx; xÞ (19a)

L imK¼L imKðx; xÞ (19b)

L ♯
imK¼L ♯

imKðx; xÞ (19c)

L 2
imK¼L 2

imKðx; xÞ (19d)

where we should note that, as shown in Appendix B, L ♯
imK ¼

L imKu.

2.3.2. Inversion
Using the GP formulation (15) and (16), we can estimate g given
the imaginary part of the experimental impedance. This is done by
conditioning g from (17) with respect to Zexpim . In short, we canwrite
that [67].

g



Zexpim � N

�
mgjZexp

im
;SgjZexp

im

�
(20)

where

mgjZexp
im

¼L imK
�
L 2

imKþ s2nI
��1

Zexpim (21a)

SgjZexp
im

¼K� L imK
�
L 2

imKþ s2nI
��1

L imKu (21b)

It should be stressed that the DRT (at the log-frequencies x) is a
Gaussian RV, whose mean and covariance can be computed
analytically using (21). These formulas depend on 1) the kernel, kðx;
x0Þ; 2) the noise level, sn; and 3) the experimental data, Zexp

im (at the
log-frequencies x). In Section 2.3.4 we will show one method to
select the hyperparameters, the parameters of the kernel and the
sn.
2.3.3. Prediction
The GP-DRT can also be used to predict the impedance at a log-

frequency x+, which was not measured before. We can perform
such a prediction by noting that, since both (15) and (16) hold, the
joint distribution of latent g, target (Zexp

im ), and predicted

ðgðx+Þ; ZDRTim ðx+ÞÞ
u

RVs follows a multivariate Gaussian distribu-
tion. Therefore, we can write0BBBBB@

g

Zexpim
gðx+Þ

ZDRTim ðx+Þ

1CCCCCA � N ð0;SÞ (22)

where

S¼

0BBBBBB@
K L imK Kðx;x+Þ L imKðx;x+Þ

L ♯
imK L 2

imKþs2nI L ♯
imKðx;x+Þ L 2

imKðx;x+Þ
Kðx+;xÞ L imKðx+;xÞ kðx+;x+Þ L imkðx+;x+Þ

L ♯
imKðx+;xÞ L 2

imKðx+;xÞ L ♯
imkðx+;x+Þ L 2

imkðx+;x+Þ

1CCCCCCA
(23)

It follows directly from (22) that0@ Zexpim

ZDRTim ðx+Þ

1A � N

0@0;

0@ L 2
imKþ s2nI L 2

imKðx; x+Þ
L 2

imKðx; x+Þu L 2
imkðx+; x+Þ

1A1A
(24)

Therefore ZDRTim ðx+Þ, i.e., the imaginary part of the impedance
predicted at x+, is an RV that can be obtained from the imaginary
part of the experimental EIS data, Zexp

im , using the conditional dis-
tribution [68,72].

ZDRTim ðx+Þ



Zexpim � N

�
mZDRT

im+
;SZDRT

im+

�
(25)

where



0BB@
gðxÞ

ZDRTre ðxÞ
ZDRTim ðxÞ

1CCA � G P

0BBB@0;

0BBB@
kðx; x0Þ L re

x
0 ðkðx; x0ÞÞ L im

x
0 ðkðx; x0ÞÞ

L re
x ðkðx; x0ÞÞ L re

x
0
�
L re

x ðkðx; x0ÞÞ� L im
x
0
�
L re

x ðkðx; x0ÞÞ�
L im

x ðkðx; x0ÞÞ L re
x
0

�
L im

x ðkðx; x0ÞÞ
�

L im
x
0

�
L im

x ðkðx; x0ÞÞ
�
1CCCA
1CCCA (34)
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mZDRT
im+

¼L 2
imKðx; x+Þu

�
L 2

imKþ s2nI
��1

Zexpim (26a)

SZDRT
im+

¼L 2
imkðx+; x+Þ

� L 2
imKðx; x+Þu

�
L 2

imKþ s2nI
��1

L 2
imKðx; x+Þ (26b)

It also follows from (22) and (23) that 
Zexpim
gðx+Þ

!
� N

 
0;

 
L 2

imKþ s2nI L imKðx+; xÞu
L imKðx+; xÞ kðx+; x+Þ

!!
(27)

where we note L ♯
imKðx; x+Þ ¼ L imKðx+; xÞu. Again, by condi-

tioning we can write

gðx+Þ



Zexpim � N ðmg+

;Sg+
Þ (28)

with

mg+
¼L imKðx+; xÞ

�
L 2

imKþ s2nI
��1

Zexpim (29a)

Sg+
¼ kðx+; x+Þ � L imKðx+; xÞ

�
L 2

imKþ s2nI
��1

L imKðx+; xÞu

(29b)

This derivation implies that the gðx+Þ can also be predicted
given the experimental data Zexpim .
2.3.4. Selecting the hyperparameters
As already illustrated in Section 2.3.2, the matrix formulas given

above for means and covariances depend on the experimental data
and the hyperpameters of the model. While during the data anal-
ysis phase there is little control over the experimental data, all
hyperparameters can be chosen, including the kernel kðx; x0Þ and
the (unknown) noise level sn. Hereon, we constrain the kernel to be
a squared exponential, i.e.,

kðx; x0Þ ¼ s2f exp
�
� 1
2[2

ðx� x0Þ2
	

(30)

and we will modify its two parameters, sf and [. Therefore, the
vector of hyperparameters of the GP-DRT is assumed to be q ¼
ðsn; sf ; [Þu.

A q can be selected by maximizing the marginal likelihood, the

probability,pðZexpim



x; qÞ3 of measuring the data, Zexp
im . The
3 We emphasize pedantically the conditioning with respect to x and q as both
parameters influence the evidence.
maximizing q is the one that would have most likely resulted in the

measured experimental data. We note that Zexp
im




q � N ð0;L 2
imK þ

s2nIÞ. Therefore, we obtain the following marginal log-likelihood
(MLL) [72]:

log p
�
Zexpim




x; q� ¼ �1
2
Zexpuim

�
L 2

imKþ s2nI
��1

Zexpim

þ �1
2
log






L 2
imKþ s2nI






� N
2
log 2 p

(31)

We will call LðqÞ the negative (and shifted) MLL (NMLL):

LðqÞ¼ � log p
�
Zexpim



x; q�� N
2
log 2 p (32)

It follows that the experimental evidence is maximized for

q¼ arg min
q
0

Lðq0Þ (33)

We also note that, in order to minimize LðqÞ, one may use a
gradient-based method which requires the computation of VLðqÞ.
This can be done analytically as shown in Appendix C.

2.3.5. Comment
It would haven been tempting to combine the real and imagi-

nary parts of the impedance formally. We note that if the DRT
model (12) and (14) hold, then the following also holds:

However, we must remark that, as shown in Appendix B,

L re
x
0
�
L re

x ðkðx; x0ÞÞ�¼∞ (35)

The covariance being infinite renders impractical the use of the
real part of the impedance. While wewill not attempt to use such a
portion of the data, wewill discuss in Section 4 how this issue could
be overcome.

2.4. The GP-DRT with inductance

In this section we are going to relax the hypothesis that L0 ¼ 0
used in (12), and, instead, set that 

gðxÞ
ZDRTim ðxÞ

!
� L0

�
0

2pex

	

þ G P

0@0;
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x ðkðx; x0ÞÞ
�1A1A (36)

where L0 is a normally distributed RV, i.e., L0 � N ð0; s2L Þ, inde-
pendent with respect to the right hand side's GP, which is identical
to the GP defined in (15). If we integrate out the L0 in (36), we can
write [70,71].
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1A1A (37)

J. Liu, F. Ciucci / Electrochimica Acta 331 (2020) 1353166
where hðxÞ ¼ 2pex. Therefore, using the same procedure used for
(17), we obtain 

g

Zexpim

!
� N

 
0;

 
K L imK

L ♯
imK L 2

imKþ s2nIþ s2Lh hu

!!
(38)

where h ¼ ðhðx1Þ;hðx2Þ;…;hðxNÞÞu. With an analogous procedure
as the one used to derive (22) and (23), we can also write0BBBBB@

g

Zexpim
gðx+Þ

ZDRTim ðx+Þ

1CCCCCA � N ð0;SÞ (39)
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It follows directly from (39) and (40) that
0@ Zexpim
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By conditioning ZDRTim ðx+Þ to the data, we can write [71].
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Zexpim � N

�
mL
ZDRT
im+

;SL
ZDRT
im+

�
(42)

where

mL
ZDRT
im+

¼hðx+ÞL0 þ L 2
imKðx; x+Þu

�
L 2

imKþ s2nI
��1�

Zexpim �huL0
�

(43a)

SL
ZDRT
im+

¼SZDRT
im+

þ R2

s�2
L þ hu

�
L 2

imKþ s2nI
��1

h
(43b)
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R ¼ hðx+Þ � h
�
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Similarly, we obtain that 
Zexpim
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therefore
gðx+Þ
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As shown previously in Section 2.3.4, we can also derive the
marginal log-likelihood (MLL), which, under the assumptions of
this subsection, is given by



Fig. 1. Schematic illustration of the GP-DRT framework.

Table 1
Parameters used for the exact impedance model.

Parameter Numerical Value

R∞ 10 U
Rct 50 U
t0 1 s
t1 0:1 s
t2 10 s
f 0.8
L0 5:0� 10�4 F

4 We note that this expression is an abuse of notation because sn is de facto an
hyperparameter, while sexpn is the amount of noise given to the synthetic
experiment.
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3. Results

The GP-DRT model, schematically shown in Fig. 1, will be tested
using both synthetic and real experimental data. First, the synthetic
experiments are analyzed to test the consistency of the method-
ology. Specifically, since the exact impedance and DRT are both
known a priori, it will be verified that the GP-DRT can recover both
quantities. In doing that, the influence of the hyperparameters on
both inversion and prediction are illustrated. Furthermore, it will be
shown that these hyperparameters can be chosen optimally. It is
also demonstrated that the GP-DRT is robust to noise, missing data,
and overlapping features in the timescale distribution. As a second
step, the GP-DRT framework will be applied to actual experiments
in order to gauge its capability to handle real data. In particular, the
GP-DRT model is benchmarked against the previously developed
Bayesian DRT methodology [49,57,73].

3.1. Synthetic experiments

In this subsection the GP-DRT model is tested against synthetic
experiments to ensure its consistency. The influence of the hyper-
parameters is also illustrated. Further, the GP-DRT is shown to be
able to consistently handle severe noise, spectral truncation,
bimodal timescale distributions, and inductive features. Before
starting a systematic analysis of the synthetic and real EIS data, we
recall that we will use interchangeably gðlogtÞ, gðlogf Þ, or gðxÞ and
that a similar notational abuse also applies to ZDRTim ðf Þ and ZDRTim ðxÞ.

3.1.1. Exact impedance
The analysis of the synthetic data is primarily based on the

impedance of a ZARC element consisting of a resistance placed in
parallel to a constant phase element (CPE) [74]. The Zexactðf Þ is
therefore given by

Zexactðf Þ¼R∞ þ 1
1
Rct

þ Cði2pf Þf
(49)

where C ¼ tf0
Rct

and the specific parameters used are shown in Table 1.
As is well known, the DRT of (49) is given by Ref. [75].

gðlogtÞ¼Rct
2p

sinðð1� fÞpÞ
coshðf logðt=t0ÞÞ � cosðpð1� fÞÞ (50)

In Fig. 2, we report the Nyquist representation of the impedance,
panel (a), and the DRT, panel (b). This shows both the exact
impedance given by (49) and its noise-corrupted counterpart

Zexpðf Þ given by (16), wherewe set sn ¼ sexpn ¼ 0:1 U1=2.4We recall
once more that the current version of the GP-DRT model does not
use the real part of the impedance data.

3.1.2. Qualitative considerations
Starting from the synthetic data, we illustrate the influence of

the hyperparameters on the recovery of the latent DRT, gðxÞ, and
the imaginary part of the impedance ZDRTim ðf Þ.

First we set sf ¼ 1 and sn ¼ sexpn . As shown in Fig. 3, changing



Fig. 2. (a) Nyquist plot of the exact ZARC impedance, Z, (solid line) and the synthetic experimental data (red dots) (sexpn ¼ 0:1 U1=2), and (b) the corresponding exact DRT, g. Note
x ¼ log f . (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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the length scale [ of the kernel has a dramatic influence on the

recovered gðxÞ and ZDRTim ðf Þ. In the left-hand panels, we report the
exact and the inverted DRT given by equations (50) and (20),
respectively. The right-hand panels depict instead the imaginary
part of the impedance including its exact value, the synthetic
experiment, and the recovered value from (24). As the standard
deviations are small, only the mean (red line) is visible.

A small [ (herewe have [ ¼ 10�2), see panels (a) and (b) of Fig. 3,
is indicative of only short range log-frequency correlations (30).
This choice results in: 1) a rather large variance as indicated by the
shaded area around the mean (red line), see Fig. 3 (a); and 2) a
significant discrepancy compared to the experimental impedance,
see Fig. 3 (b). The DRT peak is lower than the exact one and does not
result in significant oscillations at either low or high frequencies.
Raising the value of [ to 1 gives a closer matching of the peak height
in the DRT, see Fig. 3 (c), and an improved recovery of the imaginary
part of the impedance as shown in Fig. 3 (d). It also leads to a
greater confidence in the recovered DRTas shown by the far smaller
shaded area. However, oscillations are stronger at both low and
high log-frequencies. This is in contrast with the [ ¼ 10�2 case,
where the shorter-range log-frequency correlations hamper the
oscillations. Increasing [ by an order of magnitude to 10 has a
deleterious impact on both the inverted gðxÞ, see Fig. 3 (e), and the

recovered impedance ZDRTim ðf Þ, see Fig. 3 (f). Under these circum-

stances, the correlations are so broad that both gðxÞ and ZDRTim ðf Þ
effectively flatten out.

To better understand the results presented above, let us directly

inspect K and L 2K, two of the important matrices used in Section
2.3 and given by (18). The parameter [ strongly influences both
matrices, as shown in Fig. 4. Choosing a relative short cross-
correlation scale ([ ¼ 10�2) results in a diagonally dominated K
matrix, see Fig. 4 (a). The fact that K is mostly diagonal implies that
the value gðxÞ at a certain log-frequency x is only influenced by a
small number of x values directly adjacent to it. Applying the

functional (13b) twice gives the L 2K as illustrated in (18d). Since
the integral is convolutive in nature, the number of non-zero en-

tries in the L 2K matrix increases relative to those in K, see Fig. 4

(b). This means that L 2K implies far broader correlations than K.
In other words, while the DRT may not strongly cross-correlated
across the log-frequencies for low enough [, the values of the

ZDRTim ðf Þ depend on each other across a far broader spectrum. As
shown in Fig. 4 (c) and (d), increasing [ to 1 broadens L 2K more
strongly compared to the [ ¼ 10�2 case. This is also in agreement
with intuition and the results that relate to Fig. 3 (c) and (d). As
already illustrated when discussing Fig. 3 (c) and (d), increasing [ to

1 has a positive impact on the recovery of ZDRTim ðf Þ but yields
stronger oscillations in the gðxÞ.
3.1.3. Hyperparameter optimization
We show now how the hyperparameters can be optimized

based on the experimental data. We will not only change [ para-
metrically as done in Section 3.1.2 but we will also set all values in
the vector q ¼ ðsn; sf ; [Þ. For illustration purposes, we start by
varying only two elements of q (sf ¼ 1) and show the LðqÞ given
by (32) as a function of sn and [. We recall that, as explained in
Section 2.3.4, LðqÞ is closely linked to the maximum likelihood and
minimizing this function corresponds to maximizing the experi-

mental evidence. At the minimum the model output, ZDRTim ðf Þ, is
closest to the synthetic experiment, Zexpim ðf Þ. In other words, the
minimized hyperparameters are the ones that best comply with the
data, which is illustrated this in Fig. 5. From Fig. 5 (a), we observe
that the minimum in the ð[; snÞ plane is obtained for snzsexpn ,
consistently with the value of the added noise. The [ is approxi-
mately equal to 1, the value used for some of the results presented
in Section 3.1.2 above. We then set ð[; snÞ to be equal to its value at
the star symbol in Fig. 5 (a) and seek a sf which can further mini-
mize the LðqÞ. Fig. 5 (b) shows that a rather sharp minimum can be
located at sfz5 further improving the adherence of themodel with
the synthetic experiment. However, it must be noted that this is not
the true minimum of LðqÞ. The latter can be instead obtained by
minimizing all entries of the vector q simultaneously. The obtained

value q shown in Table 2 (case 1) gives the gðxÞ and ZDRTim ðf Þ shown
in Fig. 5 (c) and (d), respectively. Unsurprisingly, this value im-
proves (at least visually) the recovery of the imaginary part of the

impedance ZDRTim ðf Þ, see Fig. 5 (d). Minimizing LðqÞ yields the latent
DRT, gðxÞ, shown in Fig. 5 (c). Fringes of higher amplitude are
present compared to those observed for Fig. 3 (c). The emergence of
these fringes is a direct result of the minimization strategy, which
does not aim at optimizing the latent (or unseen) function gðxÞ, but
rather optimizes the GP-DRT model parameters with respect to the
given experimental evidence Zexpim ðf Þ.



Fig. 3. Recovered DRT, g, (left panels) and imaginary part of the impedance, Zim, (right panels) for different kernel length scales: (a) and (b) [ ¼ 10�2; (c) and (d) [ ¼ 1(c); and (e)
and (f) [ ¼ 10. sn ¼ sexpn ¼ 0:1 U1=2 was used for all plots.
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3.1.4. Influence of experimental errors
The above discussion has shown that by using the imaginary

part of the EIS data, one is able to recover the latent function, gðxÞ.
Since we have used only one computational experiment, we now
wish to see if the qualitative conclusions drawn above still hold for
more synthetic experiments and for larger experimental noise,
sexpn . To this end, 1000 synthetic experiments were generated using

(16) for each sexpn =U1=2 ¼ 0:1; 0:2; …; 1:0. After generating each
synthetic experiment, the optimal q by minimizing the NMLL
function LðqÞ was computed. Fig. 6 presents a box plot of the
optimal q’s over 10,000 stochastic experiments. The box extends
from the 25% and 75% quartiles with the notch being themedian. As
seen in Fig. 6 (a), minimizing the NMLL leads to an accurate re-
covery of sexpn by sn (the actual “experimental” values are plotted as

the dashed line). Unsurprisingly, as we increase sexpn , the
uncertainty on sn increases as evidenced by the larger box. The
increased uncertainty of sn also holds for other two parameters [

and sf .

Fig. 7 explicitly reports the synthetic impedance Zexpim ðf Þ, the
inverted gðxÞ, and the fitted ZDRTim ðf Þ for two synthetic experiments
with sexpn ¼ 1 (panels (a), (c), and (e)) and sexpn ¼ 3 (panels (d), (d),
and (f)). The optimal hyperparameters for these two experiments
are also reported in Table 2 as case 2a and 2b, respectively. As sexpn
increases from 0.1 (Fig. 2) to 1 and 3, the impedance is far noisier,
leading to larger uncertainties (gray regions) relative to gðxÞ and

ZDRTim ðf Þ. We must note two significant results: 1) in spite of the
significant noise, the GP-DRT is still able to recover the correct
mean impedance; and 2) the enlarged experimental uncertainty
sexpn is encoded directly in the model, which can quantitatively
assess it by selecting (via the minimization of LðqÞ) the



Table 2
Optimal hyperparameters obtained by minimizing the NMLL function LðqÞ.

Case Description sn sf [ sL Figure

1 Hyperparameter Optimization 8.44� 10�2 5.44 0.89 5 (c), 5 (d)
2a Increased Experimental Errors sexpn ¼ 1:0 U1=2 0.83 5.41 1.25 7 (c), 7 (e)

2b sexpn ¼ 3:0 U1=2 2.45 5.33 1.40 7 (d), 7 (f)

3a Truncated Data at 10�3 Hz 0.10 5.80 0.94 8 (c), 8 (e)
3b at 10�2 Hz 0.11 6.03 1.02 8 (d), 8 (f)
4a Overlapping Timescales (t1 ¼ 0:1 s) t2 ¼ 10 s 8.24� 10�2 7.81 0.86 9 (c), 9 (e)
4b t2 ¼ 1 s 8.30� 10�2 8.17 0.83 9 (d), 9 (f)
5 Inductance Added 0.42 5.64 1.22 5.07� 10�4 10
6 SOFC Experiment 3.89� 10�4 3.85� 10�3 1.30 5.35� 10�7 11
7 LIB Experiment 1.37� 10�4 5.09� 10�3 0.37 6.37� 10�7 12

Fig. 4. Values of the entries of the, (a) and (b), K and, (b) and (d), L 2K matrices. (a) and (b) correspond to [ ¼ 10�2, while (c) and (d) to [ ¼ 1. The row and column numbers have
been substituted by the corresponding frequencies.
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corresponding hyperparameter sn.
3.1.5. Truncated data and prediction
Wenow test if truncating the data at a certain frequency can still

allow us to estimate gðxÞ and ZDRTim ðf Þ reasonably well. The same
synthetic impedance data reported in Fig. 2 is used but it is trun-
cated at 10�3 Hz, see Fig. 8 (a). The GP-DRT can be used to predict
the gðxÞ beyond the experimental range (for f <10�3 Hz) as shown
in Fig. 8 (c).While the predictedmean does not deviate significantly
from the exact values, the standard deviation is particularly large,
suggesting significant uncertainties. These uncertainties start
before (at fz10�2 Hz) the enforced cut-off (at f ¼ 10�3 Hz) and
broaden significantly when approaching it. In contrast, the recov-

ered ZDRTim ðf Þ appears to be compliant with the synthetic experi-
ment only for f � 10�3 Hz, see Fig. 8 (e). At lower frequencies,
consistently with intuition, uncertainties increase and result in a
widening of the credibility band.

It should be stressed again that the predicted values, both the

hidden gðxÞ and the prediction ZDRTim ðf Þ, are less reliable outside the
measurement region. The same issues also emerge for EIS data
truncated at 10�2 Hz. It is worth noting that, unsurprisingly, the
optimal values of q, which are reported in Table 2 as case 3a and 3b,
are different from the ones used in case 1 in Table 2. Cutting off the
impedance at low frequencies results in additional oscillations of



Fig. 5. (a) LðqÞ as a function of [ and sn with sf ¼ 1; (b) LðqÞ versus sf with [ and sn at the values at the star symbol in panel (a). The recovered (c) DRT, g, and (d) imaginary part of
the impedance, Zim.

Fig. 6. Box plot of the optimal hyperparameters (a) sn , (b) sf , and (c) [ obtained by minimizing LðqÞ over 10,000 stochastic experiments, 1000 for each sexpn shown.
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the DRT at high frequencies, see Fig. 8 (c) and (d) for f > 10 Hz.
However, such fringes were not obviously present in untruncated
data as illustrated in Fig. 5 (c). The larger the cutoff the more
strongly the high frequency region is affected. This underpins the
nature of the functional L imð,Þ that being a convolution leads to
significant correlations in frequency space, as is apparent from
(13b). Again, this result is consistent with the discussion in Section

3.1.2 regarding K and L 2K.
3.1.6. Overlapping frequencies
We will further test if the GP-DRT model can recover over-

lapping features by summing two ZARCs, which have the following
impedance response [49,57,73].

Zexactðf Þ¼2R∞ þ 1
1
Rct

þ C1ði2pf Þf
þ 1

1
Rct

þ C2ði2pf Þf
(51)

with C1 ¼ tf1
Rct
, C2 ¼ tf2

Rct
and specific parameters reported in Table 1. To

generate the synthetic data shown in left-hand panels of Fig. 9, sexpn



Fig. 7. Nyquist plot of synthetic experimental impedance with (a) sexpn ¼ 1:0 U1=2 and (b) sexpn ¼ 3:0 U1=2. The recovered gðxÞ, (c) and (d), and Zimðf Þ, (e) and (f), are also shown. (c)
and (e) correspond to sexpn ¼ 1:0 U1=2, (panel a). (d) and (f) correspond to sexpn ¼ 3:0 U1=2 (panel b).
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is set to 0:1 U1=2.
We first study separated timescales with t1 ¼ 0:1 s and t2 ¼

10 s. The Nyquist plot reported in Fig. 9 (a) clearly shows two semi-
circles. The DRT obtained by (50) also depicts two well separated
main peaks corresponding to above two different timescales, see
Fig. 9 (c). By minimizing the NMLL function LðqÞ, the optimal
hyparameters are obtained as listed in Table 2 and the recovered
gðxÞ is also plotted in Fig. 9 (c). We find that the GP-DRTwell fits the
two main peaks of gðxÞ and estimates the mean of gðxÞ at higher
frequencies for f >10�2 Hz. The uncertainties become higher at
lower frequencies, which is also visible for a single ZARC model, see
Fig. 5 (c).

To further test the capability of the GP-DRT model to recover
overlapping DRT features, we reduce t2 by an order of magnitude
and keep t1 constant (t1 ¼ 0:1 s and t2 ¼ 1:0 s). As shown in Fig. 9
(b), the Nyquist plot appears visually as a single depressed semi-
circle. Further, the two peaks of the exact gðxÞ are much closer to
each other, see Fig. 9 (d). The GP-DRT model with the hyper-
parameters given in Table 2 (case 4a and 4b) obtained by mini-
mizing LðqÞ can still capture the key features of the DRT and match
the exact gðxÞ well. However, similar to the t2 ¼ 10 s case of Fig. 9
(c), oscillations with high variance appear at low frequencies. The

recovered imaginary impedance ZDRTim ðf Þ for both cases are shown in
Fig. 9 (e) and (f), which appear to adhere remarkably well to the
exact value. While many more simulations will be needed in the
future, these results suggest that the GP-DRTmodel can recover the
exact DRT and the impedance even if there are overlapping
features.



Fig. 8. Nyquist plot of synthetic experimental impedance data truncated at (a) 10�3 Hz and (b) 10�2 Hz; both plots have sexpn ¼ 0:1 U1=2. The predicted DRT, g, (c) and (d), and
imaginary part of the impedance, Zim, (e) and (f), are also shown.
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3.1.7. Inductance
We then use the theory of Section 2.4 to obtain the DRT of the

ZARC model (49) with an added inductance L0. This corresponds to
the following exact impedance:

Zexactðf Þ¼ i2pfL0 þR∞ þ 1
1
Rct

þ Cði2pf Þf
(52)

In Fig. 10 (a) we report the Zexpðf Þ for sexpn ¼ 0:1 U1=2. 10,000
synthetic experiments (1000 experiments for each sexpn ) were car-
ried out in the same spirit as the ones conducted in Section 3.1.4.
The optimal hyperparameters sn and sL listed in Table 2 (case 5) can
be used to estimate L0, see equation (44). The results of these
simulations are reported as a boxplot in Fig. 10 (b). The average L0
consistently matches the exact value and its confidence region
broadens as the noise increases, highlighting the ability of the GP-
DRT to handle inductive features. The recovered DRT and imped-
ance shown in Fig. 10 (c) and Fig. 10 (d), respectively, match well
with the exact noise-free values.
3.2. Real experiments

3.2.1. SOFC impedance
We analyzed the EIS data obtained by testing a symmetrical cell

with a Ba0:95La0:05Fe0:95P0:05O3�d electrode and 15% Samarium-
doped ceria as the electrolyte with an active area of approxi-
mately 1cm2 [76]. The symmetrical cell's EIS spectrum shown in
Fig.11 (a), wasmeasured at 700 +C in synthetic air (pO2

¼ 0:21 atm)



Fig. 9. Nyquist plot of the exact impedance (solid line) and synthetic experimental data (red dots) of two ZARCs with (a) t1 ¼ 0:1 s and t2 ¼ 10 s, and (b) t1 ¼ 0:1 s and t2 ¼ 1:0 s;
both plots have sexpn ¼ 0:1 U1=2. The recovered DRT, g, (c) and (d), and imaginary part of the impedance, Zim, (e) and (f) are also illustrated. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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over frequencies from 0:1 Hz to 2:47� 104 Hz with 15 points per
decade (ppd). The experimental data was first modeled as a single
ZARC circuit, whose parameters are reported in Table 3. The Nyquist
plot of the EIS generated by the chosen ECM is also shown in Fig. 11
(a). Using the ZARC model, gref ðxÞ can be calculated using (50), see
Fig. 11 (b). Following the same procedure used in Section 3.1.7, we
minimize the NMLL, LðqÞ, to obtain the optimal hyperparameters
used to recover the latent gðxÞ shown in Fig. 11 (b). It is noted that
the GP-DRT matches well to gref ðxÞ’s main peak, which is located at
fz104 Hz. The gðxÞ’s credibility is generally high but decreases
away from the peak. In addition, the GP-DRT estimates L0 as 5:31�
10�7 F, which is much close to the value fitted by ECM as listed in
Table 3. We also conducted Bayesian RR [49] to compare the
recovered gðxÞ against that obtained by GP-DRT. As illustrated in

Fig. 11 (c), the RR deconvolution matches the gref ðxÞ well and
displays a credibility higher than that of the GP-DRT. Lastly, Fig. 11
(d) shows the reconstructed imaginary parts of the EIS data by GP-
DRT and RR. The two deconvolutions overlap and fit the Zexpim ðf Þ
well. We must stress that, while the Zimðf Þ obtained using the GP-
DRT is a GP with a narrow credibility band, its Bayesian RR coun-
terpart is simply a function obtained bymapping of the maximum a
posteriori prediction (the black line of Fig. 11 (c)) to the impedance.
3.2.2. Commercial LIB spectra
We used the GP-DRT model to analyze a previously reported EIS

spectrum of a commercial lithium-ion battery (LIB) [57]. A com-
mercial LIB (LiCoO2-Ansmann 18650) was tested at 25% state of
charge at room temperature. The EIS, which is reported in Fig. 12
(a), was collected from 5 mHz to 600 Hz. We chose this spectrum
because it provides a challenging test for the GP-DRTmodel [66,77].
We first fitted the measured EIS to an ECM composed of 3 ZARCs:



Fig. 10. (a) Nyquist plot of a single ZARC element plus an inductance (sexpn ¼ 0:5 U1=2). (b) Box plot of estimated L0 as a function of sexpn . (c) Recovered DRT, g, and (d) imaginary part
of the impedance, Zim.
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ZECMðf Þ¼ i2pfL0 þR∞ þ 1
1

Rct;1
þ C1ði2pf Þf1

þ 1
1

Rct;2
þ C2ði2pf Þf2

þ 1
1

Rct;3
þ C3ði2pf Þf3

(53)

with the regressed parameters listed in Table 4. The DRT obtained
by (50) is the gref ðxÞ plotted in Fig. 12 (b) and (c) as a reference. As
illustrated in Fig. 12 (b), the recovered gðxÞ by the GP-DRT model
captures the gref ðxÞ’s main peaks and values. However, the mean
value of the gðxÞ has stronger oscillations and a broader credibility
region. The inductance L0 estimated by the GP-DRT is 5:20�
10�7 F, a value matching the one obtained by the ECM fitting, see
Table 4. Following our earlier publications [49,73], we also decon-
volved the LIB spectrum using Bayesian RR to estimate the gðxÞ, see
Fig. 12 (c). It is noted that, unlike the GP-DRT framework, the
Bayesian RR method has difficulty in matching well to the shape
and the position of the main peaks of gref ðxÞ.

The recovered imaginary part of the impedance ZDRTim ðf Þ is
shown in Fig. 12 (d) together with the imaginary experimental
impedance Zexpim ðf Þ. The GP-DRT approach matches the experi-
mental data with a high credibility. In contrast, Bayesian RR shows
clear discrepancy at low and high frequencies.
4. Perspective and future work

We have shown that the DRT can be interpreted as a GP. In
essence, GPs generalize Gaussian RVs and the GP-DRT extends the
Bayesian DRT methods previously developed by our group
[49,57,73]. In the GP-DRT, we first define the latent (or unseen)
function gðxÞ, which we identify as the DRT, to be a GP. We recall
that x ¼ logf ¼ �logt and that gðxÞ is indicated interchangeably as

gðlogtÞ, or gðlogf Þ, and a similar notational abuse is used for ZDRTim ðf Þ
and ZDRTim ðxÞ. Then, we apply a linear functional to gðxÞ to obtain

ZDRTim ðxÞ, the imaginary part of the impedance. In doing that, we

show that gðxÞ and ZDRTim ðxÞ are two correlated GPs. The GP-DRT
consistently manages to identify the hyperparameters without
sacrificing computational tractability. The GP-DRT can be used to
solve two major challenges: 1) the inverse problem of determining
the DRT given the impedance data; and 2) the prediction of the
impedance together with its credibility. It is important to note that
one of the most striking features of GP-DRT is that it overcomes the
limitations of all approaches used to date for the analysis of the
DRT. This is because it allows us to select the hyperparameters
rationally by maximizing the experimental evidence.

Despite being highly effective, the GP-DRT has a few short-
comings, which are not addressed in this report. First, as it is
currently formulated, the GP-DRT does not allow using the real part
of the data. Second, we have not enforced any constraint on the
DRT, for example, there are no constraints set for gðxÞwith gðxÞ � 0.
Third, we implement the current GP-DRT only with a squared
exponential kernel. Hereon, we will suggests methodologies that
can be used to tackle these two issues.

4.1. Including the real part of the data

Equation (35) highlights one major limitation of the current



Fig. 11. (a) Nyquist plot of the impedance of the experimental SOFC data (red dots) and fitted ECM (solid line). Recovered DRT, g, by (b) the GP-DRT method and (c) Bayesian RR,
where in both panels the DRT of the reference ECM is also shown. (d) The imaginary part of the impedance, Zim, obtained by the GP-DRT (red) and Bayesian RR (blue) and
comparison with the experimental EIS. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 3
ECM parameters obtained by fitting the EIS spectrum of the
SOFC shown in Fig. 11.

Parameter Numerical Value

R∞ 1:42 U
Rct 8:41� 10�2 U
t0 1:88� 10�4 s
f 0.64
L0 5:20� 10�7 F
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formulation of the GP-DRT: using the real part of the impedance
data leads to infinite entries in the covariance matrix. Such an
inconsistency can be overcome if bounds of integration are changed
in the functionals. For example, the following can be defined:

L re
x ð,Þ¼

ðxmax

xmin

1

1þ ð2pex�bxÞ2 ð,Þ dbx (54a)

L im
x ð,Þ¼ �

ðxmax

xmin

2pex�bx
1þ ð2pex�bxÞ2 ð,Þ dbx (54b)
4.2. Positivity constraint

As seen in the many examples above, the latent gðxÞ estimated
using the GP-DRT model often oscillates away from the peak,
especially at the rim of the frequency spectrum. Also, the GP-DRT
model repeatedly leads to estimated gðxÞ’s that are not positive
everywhere, where negative values of gðxÞ are unphysical. Such a
limitation can be overcome by constraining the latent variable gðxÞ
to be positive. Inspired by works on classification [67,78], this
constraint can be implemented by modifying the joint posterior to
include a probit likelihood prior that enforces gðxÞ � 0 [79]. Algo-
rithmically, this is done by approximating the corresponding
probability density functions (PDFs) either with a Laplace approx-
imation or an expectation propagation algorithm [80,81].
4.3. Choosing the kernel

In this work, we constrained the kernel, see Section 2.3.4, to be a
single squared exponential with a length scale parameter [. How-
ever, this is not the only choice; different kernels or combination of
kernels could have been used [67]. In principle, instead of defining
the kernels in advance, the structures of kernels could have been
inferred from the data [82] for example by leveraging the Kramers-
Kronig relationships [50] and their connection to the Hilbert
transform [83]. Also, the selection of kernel functions and param-
eter estimation can also be implemented by the combination of GPs
and the approximate Bayesian computation algorithm [84].
5. Conclusions

In this work, we have developed the GP-DRTmodel. The GP-DRT
is a novel theoretical framework based on GP that recovers the DRT
from EIS data using analytical expressions without the need for
choosing the model hyperparameters arbitrarily. The model as-
sumes that the DRT, gðxÞ, is a GP. Using the definition of DRT and its



Fig. 12. (a) Nyquist plot of the EIS response of a commercial LIB (red dots) fitted using an ECM consisting of 3 ZARCs (solid line). Recovered DRT, g, by (b) the GP-DRT method and (c)
Bayesian RR. (d) The recovered imaginary part of the impedance, Zim, by GP-DRT (red) and Bayesian RR (blue) compared with the experimental data. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 4
ECM parameters obtained by fitting the EIS spectrum of the
LIB shown in Fig. 12.

Parameter Numerical Value

R∞ 0:11 U
Rct;1 1:69� 10�2 U
Rct;2 2:12� 10�2 U
Rct;3 5:23� 10�2 U
t1 2:34� 10�3 s
t2 0:20 s
t3 75:30 s
f1 0.54
f2 0.94
f3 0.79
L0 7:61� 10�7 F
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relationship to the impedance, it follows that the imaginary part of

the impedance, ZDRTim ðf Þ, is also a GP. Therefore, the PDFs of gðxÞ and
ZDRTim ðf Þ can be obtained by conditioning with respect to the
experimental data. While the performance of the GP-DRT model is
strongly affected by its hyperparameters, they can be chosen
rationally by maximizing the experimental evidence (i.e., mini-
mizing the NLLM LðqÞ). Both synthetic experiments and real ex-
periments indicate that the GP-DRT framework is capable of
recovering both the latent DRT and the impedance, even for mea-
surements with a high noise level, overlapping timescales, or
incomplete (spectrally truncated) data. In reference to the latter
issues, the GP-DRT can predict the impedance values and their
uncertainty at unmeasured frequencies. Moreover, the GP-DRT
model can include the inductances without deteriorating its
performance.
We also observe that the GP-DRT model performs well when

“real” experiments are analyzed. The method is particularly well
suited to fit the imaginary part of the impedance data. This feature
is attributed to the strategy used to optimize the hyperparameters.
These hyperparameters are obtained by maximizing the likelihood
of the experimental data.

In summary, the GP-DRTmodel proposed in this article provides
a completely new approach to DRT analysis. Not only can the
credibility of the obtained results be assessed, but also the model
hyperparameters can be chosen rationally. This approach will
certainly stimulate further work and improvement in this area.
Code availability

Code for tutorial examples is available at https://github.com/
ciuccislab/GP-DRT.
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List of abbreviations and symbols

gðxÞ Distribution of relaxation times, also written as gðlogf Þ
or gðlogtÞ

gðtÞ Distribution function
gref ðxÞ Reference solution of DRT
Zexp Vector of experimental impedance
Zexpðf Þ Experimental impedance, also written as ZexpðxÞ
ZDRTðf Þ Impedance by DRT, also written as ZDRTðxÞ
L xð,Þ Linear functional
m Mean function of GP
K Covariance matrix of GP
I Indentity matrix
S Covariance matrix of GP with respect to observations
kðx;x0Þ Kernel function
ε Random error
sn Standard deviation of experimental impedance noise
sL Standard deviation of inductance noise
sf Hyperparameter of kernel function
[ Hyperparameter of length scale in kernel function
LðqÞ Negative marginal log-likelihood
VLðqÞ Gradient of negative marginal log-likelihood
q Hyperparameter vector
t Relaxation time
t0 Characteristic relaxation time
f Parameter of constant phase element
f Frequency
x log-frequency
l Regularizing parameter
L0 Inductance
R∞ Ohmic resistance
Rct Charge transfer resistance
CPE Constant phase element
DRT Distribution of relaxation times
ECM Equivalent circuit model
ECS Electrochemical system
EIS Electrochemical impedance spectroscopy
GP Gaussian process
NMLL Negative marginal log-likelihood
PDF Probability density function
RR Ridge regression
RV Random variable

Appendix A. Multivariate Gaussian Random Variables

We recall that a multivariate Gaussian RV z with mean m and a
positive definite covariance matrix S_0 is defined as z � N ðm;SÞ
and its probability distribution function is

pðzÞ¼N ðzjm;SÞ¼
�
ð2pÞNdetðSÞ

��1
2

exp
�
� 1
2
ðz� mÞuS�1ðz�mÞ

	 (55)

For notational convenience, we can partition the Gaussian RV as
follows:
z¼
�
x
y

	
(56)

where the corresponding means and covariances are

m¼
�
mx
my

	
(57a)

S¼
 
Sxx Sxy

Su
xy Syy

!
(57b)

Below, we applymarginalization and conditioning andwrite the
PDF of x and of xjy, respectively.
A.1. Marginalization

Using (56) and (57), we can obtain the PDF of x by integrating y
out as

pðxÞ¼
ð
pðzjm;SÞ dy¼N ðxjmx;SxxÞ (58)

or equivalently we can write

x � N ðmx;SxxÞ (59)
A.2. Conditioning

The probability of x known y is defined as follows:

pðxjyÞ¼ pðx; yÞ
pðyÞ ¼N

�
x


mxjy;Sxjy

�
(60)

where

mxjy ¼mx þ SxyS
�1
yy
�
y�my

�
(61a)

Sxjy ¼Sxx � SxyS
�1
yy S

u
xy (61b)

or equivalently

x


y � N

�
mxjy;Sxjy

�
(62)
Appendix B. Matrices Used in the GP-DRT: Derivations and
Properties

B.1. L imK and L ♯
imK

We consider the kernel to be radial, i.e., kðx;x0Þ ¼ kðjx � x0jÞ, and
recall (15) and (18b)

L im
x
0 ðkðx; x0ÞÞ¼ �

ð∞
�∞

2pex
0�bx

1þ ð2pex0�bxÞ2 kðx;bxÞ dbx (63)

Specifically, the (18b) can be written explicitly as
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L imKðxn; xmÞ¼




L im

x
0 ðkðx; x0ÞÞ





jxn;xm ¼

�
ð∞
�∞

2pexm�bx
1þ ð2pexm�bxÞ2 kðxn;bxÞ dbx

(64)

If we define c ¼ bx� xn, then we can also write that

L imKðxn; xmÞ¼ �
ð∞
�∞

2peDxmn�c

1þ ð2peDxmn�cÞ2
kðcÞ dc (65)

where Dxmn ¼ xm � xn. We note that, if the frequencies are loga-
rithmically equispaced (the number of points per decade is set),
then L imK is a Toeplitz matrix, a matrix whose descending di-
agonals are constant. This reduces significantly the computation
time as, instead of computing the full N2 integrals, only 2N� 1 are
needed. We also note that

L im
x ðkðx; x0ÞÞ¼ �

ð∞
�∞

2pex�bx
1þ ð2pex�bxÞ2 kðbx; x0Þ dbx (66)

which gives that

L ♯
imKðxn; xmÞ¼





L im
x ðkðx; x0ÞÞ





jxn;xm ¼

�
ð∞
�∞

2pexn�bx
1þ ð2pexn�bxÞ2 kðbx; xmÞ dbx

(67)

Defining c ¼ bx � xm we can write that

L ♯
imKðxn; xmÞ¼ �

ð∞
�∞

2peDxnm�c

1þ ð2peDxnm�cÞ2
kðcÞ dc (68)

It follows that by comparing (65) and (68) that

L ♯
imKðxn; xmÞ¼L imKðxm; xnÞ (69)

and that

L ♯
imK¼L imKu (70)
B.2. L 2
imK

Interestingly, we can transform (18d) from a double integral into
a single integral. We first recall (18d)

L 2
imKðxn; xmÞ¼ð∞

�∞

ð∞
�∞

2pexn�x
0

1þ ð2pexn�x
0 Þ2

2pexm�x
00

1þ ð2pexm�x
00 Þ2

kðx0; x00 Þ dx0 dx00 (71)

We perform a change of variables by setting c ¼ x0� x
00
and c0 ¼

x0 þ x
00
. We note that the Jacobian of this transformation is
v

vqj
L
�
q
� ¼ �1

2
Zexpuim A

�
q
��1 

v

vqj
A
�
q
�!

A
�
q
��1

Zexpim þþ1
2
tr
�
A
�
q
��1�

v

vq
vðc;c0Þ
vðx0; x00 Þ

¼
�
1 �1
1 1

	
(72)

therefore

dc dc0 ¼det
�
vðc;c0Þ
vðx0; x00 Þ

	
dx0 dx

00 ¼2 dx0 dx
00

(73)

The (18d) can be rewritten as

L 2
imKðxn; xmÞ¼

1
2

ð∞
�∞

0B@ð∞
�∞

2pexn�
cþc0
2

1þ
�
2pexn�

cþc0
2

	2
2pexm�

c0�c
2

1þ
�
2pexm�

c0�c
2

	2 dc0

1CAkðcÞ dc

(74)

The inner integral isð∞
�∞

ð2pÞ2exnþxm�c0�
1þ ð2pÞ2e2xn�ðcþc0Þ

��
1þ ð2pÞ2e2xm�ðc0�cÞ

� dc0

¼ ðcþ DxmnÞcschðcþ DxmnÞ

(75)

where cschðzÞ ¼ 2
ez�e�z. This procedure allows us to simplify

(18d) as:

L 2
imKðxn; xmÞ¼

1
2

ð∞
�∞

ðcþDxmnÞcschðcþDxmnÞkðcÞ dc (76)

Incidentally, we note that L 2
imK is symmetrical, i.e.,

L 2
imK ¼ L 2

imKu or equivalently ðL 2
imKÞnm ¼ L 2

imKðxn; xmÞ ¼
L 2

imKðxm; xnÞ ¼ ðL 2
imKÞmn, because swapping xn and xm in (18d),

does not change the integrand. Furthermore, if the frequencies are

equispaced logarithmically, then L 2
imK is a Toeplitz matrix.
B.3. L 2
reK

We note that the following holds:

L re
x
0
�
L re

x ðkðx; x0ÞÞ�jxn ;xm
¼
ð∞
�∞

ð∞
�∞

1

1þ ð2pexn�x
0 Þ2

1

1þ ð2pexm�x
00
Þ2

kðx0; x00 Þ dx0 dx00

¼ ∞
(77)

as the integrand does not tend to zero if. x0;x
00
/∞
Appendix C. Gradient of marginal log-likelihhod (MLL)

In order to compute the minimum of LðqÞ, we use gradients and
note that [67].
j
A
�
q
�		

(78)
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where if q ¼ ðsn; sf ; [Þu, then

AðqÞ¼L 2
imK

�
sf ; [

�
þ s2nI (79)

or if q ¼ ðsn; sf ; [; sLÞu, then

AðqÞ¼L 2
imK

�
sf ; [

�
þ s2nIþ s2Lhh

u (80)
References

[1] A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical Methods: Fun-
damentals and Applications, vol. 2, Wiley, New York, 1980.

[2] E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment,
and Applications, John Wiley & Sons, 2018.

[3] A. Frumkin, Advances in Electrochemistry and Electrochemical Engineering,
vol. 3, Interscience Pub., New York, 1963, p. 307.

[4] A. Lasia, Electrochemical Impedance Spectroscopy and its Applications,
Springer US, Boston, MA, 2002, pp. 143e248.

[5] M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy, vol. 48,
John Wiley & Sons, 2011.

[6] W. Lai, S.M. Haile, Impedance spectroscopy as a tool for chemical and elec-
trochemical analysis of mixed conductors: a case study of ceria, J. Am. Ceram.
Soc. 88 (11) (2005) 2979e2997.

[7] F. Ciucci, Modeling electrochemical impedance spectroscopy, Curr. Opinion
Electrochem. 13 (2019) 132e139.

[8] M.J. Jørgensen, M. Mogensen, Impedance of solid oxide fuel cell LSM/YSZ
composite cathodes, J. Electrochem. Soc. 148 (5) (2001) A433eA442.

[9] V. Sonn, A. Leonide, E. Ivers-Tiff�ee, Combined deconvolution and cnls fitting
approach applied on the impedance response of technical Ni/8YSZ cermet
electrodes, J. Electrochem. Soc. 155 (7) (2008) B675eB679.

[10] A. Leonide, V. Sonn, A. Weber, E. Ivers-Tiff�ee, Evaluation and modeling of the
cell resistance in anode-supported solid oxide fuel cells, J. Electrochem. Soc.
155 (1) (2008) B36eB41.

[11] S. Dierickx, J. Joos, A. Weber, E. Ivers-Tiff�ee, Advanced impedance modelling of
Ni/8YSZ cermet anodes, Electrochim. Acta 265 (2018) 736e750.

[12] S. Dierickx, T. Mundloch, A. Weber, E. Ivers-Tiff�ee, Advanced impedance
model for double-layered solid oxide fuel cell cermet anodes, J. Power Sources
415 (2019) 69e82.

[13] E.-C. Shin, J. Ma, P.-A. Ahn, H.-H. Seo, D.T. Nguyen, J.S. Lee, Deconvolution of
four transmission-line-model impedances in ni-ysz/ysz/lsm solid oxide cells
and mechanistic insights, Electrochim. Acta 188 (2016) 240e253.

[14] R. Mohammadi, M. Søgaard, T. Ramos, M. Ghassemi, M.B. Mogensen, Elec-
trochemical impedance modeling of a solid oxide fuel cell anode, Fuel Cells 14
(4) (2014) 645e659.

[15] J.P. Schmidt, T. Chrobak, M. Ender, J. Illig, D. Klotz, E. Ivers-Tiff�ee, Studies on
LiFePO4as cathode material using impedance spectroscopy, J. Power Sources
196 (12) (2011) 5342e5348.

[16] W. Waag, S. K€abitz, D.U. Sauer, Experimental investigation of the lithium-ion
battery impedance characteristic at various conditions and aging states and its
influence on the application, Appl. Energy 102 (2013) 885e897.

[17] C. Chen, J. Liu, K. Amine, Symmetric cell approach and impedance spectros-
copy of high power lithium-ion batteries, J. Power Sources 96 (2) (2001)
321e328.

[18] B. Scrosati, F. Croce, L. Persi, Impedance spectroscopy study of peo-based
nanocomposite polymer electrolytes, J. Electrochem. Soc. 147 (5) (2000)
1718e1721.

[19] S. Zhang, K. Xu, T. Jow, Eis study on the formation of solid electrolyte interface
in li-ion battery, Electrochim. Acta 51 (8e9) (2006) 1636e1640.

[20] J. Illig, M. Ender, A. Weber, E. Ivers-Tiff�ee, Modeling graphite anodes with
serial and transmission line models, J. Power Sources 282 (2015) 335e347.

[21] P. Braun, C. Uhlmann, M. Weiss, A. Weber, E. Ivers-Tiff�ee, Assessment of all-
solid-state lithium-ion batteries, J. Power Sources 393 (2018) 119e127.

[22] F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt,
Influence of electrolyte in transport and recombination in dye-sensitized solar
cells studied by impedance spectroscopy, Sol. Energy Mater. Sol. Cells 87
(1e4) (2005) 117e131.

[23] Q. Wang, J.E. Moser, M. Gr€atzel, Electrochemical impedance spectroscopic
analysis of dye-sensitized solar cells, J. Phys. Chem. B 109 (31) (2005)
14945e14953.

[24] R. K€otz, M. Hahn, R. Gallay, Temperature behavior and impedance funda-
mentals of supercapacitors, J. Power Sources 154 (2) (2006) 550e555.

[25] U.G. Kyle, I. Bosaeus, A.D. De Lorenzo, P. Deurenberg, M. Elia, J.M. G�omez,
B.L. Heitmann, L. Kent-Smith, J.-C. Melchior, M. Pirlich, et al., Bioelectrical
impedance analysisdpart i: review of principles and methods, Clin. Nutr. 23
(5) (2004) 1226e1243.

[26] E. Katz, I. Willner, Probing biomolecular interactions at conductive and sem-
iconductive surfaces by impedance spectroscopy: routes to impedimetric
immunosensors, dna-sensors, and enzyme biosensors, Electroanalysis: An Int.
J. Devoted Fundam. Pract. Aspects Electroanal. 15 (11) (2003) 913e947.
[27] M.D. Van Loan, P. Withers, J. Matthie, P.L. Mayclin, Use of bioimpedance

spectroscopy to determine extracellular fluid, intracellular fluid, total body
water, and fat-free mass, in: Human Body Composition, Springer, 1993,
pp. 67e70.

[28] W. Franks, I. Schenker, P. Schmutz, A. Hierlemann, Impedance characteriza-
tion and modeling of electrodes for biomedical applications, IEEE (Inst. Electr.
Electron. Eng.) Trans. Biomed. Eng. 52 (7) (2005) 1295e1302.

[29] R. Go, R. Bashir, A. Sarikaya, M. Ladisch, J. Sturgis, J. Robinson, T. Geng,
A. Bhunia, H. Apple, S. Wereley, et al., Microfluidic biochip for impedance
spectroscopy of biological species, Biomed. Microdevices 3 (3) (2001)
201e209.

[30] J. Song, M.Z. Bazant, Electrochemical impedance imaging via the distribution
of diffusion times, Phys. Rev. Lett. 120 (11) (2018) 116001.

[31] J.R. Macdonald, Comparison of parametric and nonparametric methods for the
analysis and inversion of immittance data: critique of earlier work, J. Comput.
Phys. 157 (1) (2000) 280e301.

[32] D.D. Macdonald, Reflections on the history of electrochemical impedance
spectroscopy, Electrochim. Acta 51 (8e9) (2006) 1376e1388.

[33] J. Fleig, Impedance spectroscopy on solids: the limits of serial equivalent
circuit models, J. Electroceram. 13 (1e3) (2004) 637e644.

[34] A. Nenning, A. Opitz, T. Huber, J. Fleig, A novel approach for analyzing elec-
trochemical properties of mixed conducting solid oxide fuel cell anode ma-
terials by impedance spectroscopy, Phys. Chem. Chem. Phys. 16 (40) (2014)
22321e22336.

[35] J. Maier, Physical Chemistry of Ionic Materials: Ions and Electrons in Solids,
John Wiley & Sons, 2004.

[36] C. Chen, D. Chen, W.C. Chueh, F. Ciucci, Modeling the impedance response of
mixed-conducting thin film electrodes, Phys. Chem. Chem. Phys. 16 (23)
(2014) 11573e11583.

[37] F. Ciucci, W.C. Chueh, D.G. Goodwin, S.M. Haile, Surface reaction and transport
in mixed conductors with electrochemically-active surfaces: a 2-d numerical
study of ceria, Phys. Chem. Chem. Phys. 13 (6) (2011) 2121e2135.

[38] J. Liu, F. Ciucci, Modeling the impedance spectra of mixed conducting thin
films with exposed and embedded current collectors, Phys. Chem. Chem.
Phys. 19 (38) (2017) 26310e26321.

[39] J. Jamnik, J. Maier, Generalised equivalent circuits for mass and charge
transport: chemical capacitance and its implications, Phys. Chem. Chem. Phys.
3 (9) (2001) 1668e1678.

[40] J. Horno, A. Moya, C. Gonz�alez-Fern�andez, Simulation and interpretation of
electrochemical impedances using the network method, J. Electroanal. Chem.
402 (1e2) (1996) 73e80.

[41] A. Moya, J. Horno, Application of the network simulation method to ionic
transport in ion-exchange membranes including diffuse double-layer effects,
J. Phys. Chem. B 103 (49) (1999) 10791e10799.

[42] J. Bisquert, Theory of the impedance of electron diffusion and recombination
in a thin layer, J. Phys. Chem. B 106 (2) (2002) 325e333.

[43] M. Doyle, J.P. Meyers, J. Newman, Computer simulations of the impedance
response of lithium rechargeable batteries, J. Electrochem. Soc. 147 (1) (2000)
99e110.

[44] J.P. Meyers, M. Doyle, R.M. Darling, J. Newman, The impedance response of a
porous electrode composed of intercalation particles, J. Electrochem. Soc. 147
(8) (2000) 2930e2940.

[45] E. Ivers-Tiffee, A. Weber, Evaluation of electrochemical impedance spectra by
the distribution of relaxation times, J. Ceram. Soc. Jpn. 125 (4) (2017)
193e201.

[46] K. Kobayashi, T.S. Suzuki, Distribution of relaxation time analysis for non-ideal
immittance spectrum: discussion and progress, J. Phys. Soc. Jpn. 87 (9) (2018),
094002.

[47] Y. Zhang, Y. Chen, M. Li, M. Yan, M. Ni, C. Xia, A high-precision approach to
reconstruct distribution of relaxation times from electrochemical impedance
spectroscopy, J. Power Sources 308 (2016) 1e6.

[48] F. Ciucci, C. Chen, Analysis of electrochemical impedance spectroscopy data
using the distribution of relaxation times: a bayesian and hierarchical
bayesian approach, Electrochim. Acta 167 (2015) 439e454.

[49] T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Influence of the discretization
methods on the distribution of relaxation times deconvolution: implementing
radial basis functions with drttools, Electrochim. Acta 184 (2015) 483e499.

[50] B.A. Boukamp, Fourier transform distribution function of relaxation times;
application and limitations, Electrochim. Acta 154 (2015) 35e46.

[51] S.J. Cooper, A. Bertei, D.P. Finegan, N.P. Brandon, Simulated impedance of
diffusion in porous media, Electrochim. Acta 251 (2017) 681e689.

[52] P.S. Sabet, D.U. Sauer, Separation of predominant processes in electrochemical
impedance spectra of lithium-ion batteries with nickelmanganesecobalt
cathodes, J. Power Sources 425 (2019) 121e129.

[53] D. Clematis, S. Presto, M.P. Carpanese, A. Barbucci, F. Deganello, L.F. Liotta,
C. Aliotta, M. Viviani, Distribution of relaxation times and equivalent circuits
analysis of Ba0:5Sr0:5Co0:8Fe0:2O3�d , Catalysts 9 (5) (2019) 441.

[54] X. Zhou, J. Huang, Z. Pan, M. Ouyang, Impedance characterization of lithium-
ion batteries aging under high-temperature cycling: importance of
electrolyte-phase diffusion, J. Power Sources 426 (2019) 216e222.

[55] B.A. Boukamp, A. Rolle, Use of a distribution function of relaxation times (dfrt)
in impedance analysis of sofc electrodes, Solid State Ion. 314 (2018) 103e111.

[56] B.A. Boukamp, A. Rolle, Analysis and application of distribution of relaxation
times in solid state ionics, Solid State Ion. 302 (2017) 12e18.

http://refhub.elsevier.com/S0013-4686(19)32188-7/sref1
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref1
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref2
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref2
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref2
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref3
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref3
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref4
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref4
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref4
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref5
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref5
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref5
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref6
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref6
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref6
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref6
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref7
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref7
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref7
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref8
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref8
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref8
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref8
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref9
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref9
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref9
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref9
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref9
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref10
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref10
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref10
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref10
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref10
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref11
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref11
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref11
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref11
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref12
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref12
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref12
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref12
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref12
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref13
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref13
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref13
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref13
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref14
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref14
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref14
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref14
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref14
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref15
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref15
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref15
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref15
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref15
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref15
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref16
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref16
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref16
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref16
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref16
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref17
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref17
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref17
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref17
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref18
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref18
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref18
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref18
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref19
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref19
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref19
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref19
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref20
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref20
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref20
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref20
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref21
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref21
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref21
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref21
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref22
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref22
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref22
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref22
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref22
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref22
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref23
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref23
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref23
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref23
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref23
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref24
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref24
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref24
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref24
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref25
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref25
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref25
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref25
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref25
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref25
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref25
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref26
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref26
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref26
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref26
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref26
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref27
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref27
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref27
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref27
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref27
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref28
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref28
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref28
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref28
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref29
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref29
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref29
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref29
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref29
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref30
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref30
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref31
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref31
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref31
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref31
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref32
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref32
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref32
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref32
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref33
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref33
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref33
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref33
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref34
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref34
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref34
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref34
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref34
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref35
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref35
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref35
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref36
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref36
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref36
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref36
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref37
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref37
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref37
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref37
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref38
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref38
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref38
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref38
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref39
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref39
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref39
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref39
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref40
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref40
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref40
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref40
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref40
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref40
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref40
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref41
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref41
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref41
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref41
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref42
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref42
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref42
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref43
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref43
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref43
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref43
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref44
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref44
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref44
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref44
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref45
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref45
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref45
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref45
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref46
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref46
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref46
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref47
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref47
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref47
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref47
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref48
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref48
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref48
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref48
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref49
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref49
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref49
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref49
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref50
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref50
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref50
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref51
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref51
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref51
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref52
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref52
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref52
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref52
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref53
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref53
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref53
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref53
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref54
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref54
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref54
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref54
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref55
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref55
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref55
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref56
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref56
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref56


J. Liu, F. Ciucci / Electrochimica Acta 331 (2020) 135316 21
[57] M. Saccoccio, T.H. Wan, C. Chen, F. Ciucci, Optimal regularization in distri-
bution of relaxation times applied to electrochemical impedance spectros-
copy: ridge and lasso regression methods-a theoretical and experimental
study, Electrochim. Acta 147 (2014) 470e482.

[58] T. H€orlin, Deconvolution and maximum entropy in impedance spectroscopy
of noninductive systems, Solid State Ion. 107 (3e4) (1998) 241e253.

[59] M. Eckert, L. K€olsch, S. Hohmann, Fractional algebraic identification of the
distribution of relaxation times of battery cells, in: 2015 54th IEEE Conference
on Decision and Control (CDC), IEEE, 2015, pp. 2101e2108.

[60] E. Tuncer, S. Gubanski, On dielectric data analysis. using the Monte Carlo
method to obtain relaxation time distribution and comparing non-linear
spectral function fits, IEEE Trans. Dielectr. Electr. Insul. 8 (3) (2001) 310e320.

[61] A. Tesler, D. Lewin, S. Baltianski, Y. Tsur, Analyzing results of impedance
spectroscopy using novel evolutionary programming techniques,
J. Electroceram. 24 (4) (2010) 245e260.

[62] S. Hershkovitz, S. Baltianski, Y. Tsur, Harnessing evolutionary programming
for impedance spectroscopy analysis: a case study of mixed ionic-electronic
conductors, Solid State Ion. 188 (1) (2011) 104e109.

[63] S. Hershkovitz, S. Tomer, S. Baltianski, Y. Tsur, Isgp: impedance spectroscopy
analysis using evolutionary programming procedure, ECS Trans. 33 (40)
(2011) 67e73.

[64] Y. Zhang, Y. Chen, M. Yan, F. Chen, Reconstruction of relaxation time distri-
bution from linear electrochemical impedance spectroscopy, J. Power Sources
283 (2015) 464e477.

[65] X. Li, M. Ahmadi, L. Collins, S.V. Kalinin, Deconvolving distribution of relaxa-
tion times, resistances and inductance from electrochemical impedance
spectroscopy via statistical model selection: exploiting structural-sparsity
regularization and data-driven parameter tuning, Electrochim. Acta 313
(2019) 570e583.

[66] F. Ciucci, T. Carraro, W.C. Chueh, W. Lai, Reducing error and measurement
time in impedance spectroscopy using model based optimal experimental
design, Electrochim. Acta 56 (15) (2011) 5416e5434.

[67] C.K. Williams, C.E. Rasmussen, Gaussian Processes for Machine Learning, vol.
2, MIT Press Cambridge, MA, 2006.

[68] K.P. Murphy, Machine Learning: a Probabilistic Perspective, MIT press, 2012.
[69] S. S€arkk€a, Linear operators and stochastic partial differential equations in

Gaussian process regression, in: Proceedings of the 21st International Con-
ference on Artificial Neural Networks - Volume Part II, ICANN’11, Springer-
Verlag, Berlin, Heidelberg, 2011, pp. 151e158.

[70] C.E. Rasmussen, Gaussian processes in machine learning, in: Summer School
on Machine Learning, Springer, 2003, pp. 63e71.
[71] A. O'Hagan, Curve fitting and optimal design for prediction, J. R. Stat. Soc. Ser.

B 40 (1) (1978) 1e24.
[72] A. Papoulis, S.U. Pillai, Probability, Random Variables, and Stochastic Pro-

cesses, Tata McGraw-Hill Education, 2002.
[73] M.B. Effat, F. Ciucci, Bayesian and hierarchical bayesian based regularization

for deconvolving the distribution of relaxation times from electrochemical
impedance spectroscopy data, Electrochim. Acta 247 (2017) 1117e1129.

[74] S. Buller, M. Thele, E. Karden, R.W.D. Doncker, Impedance-based non-linear
dynamic battery modeling for automotive applications, J. Power Sources, in:
Proceedings of the International Conference on Lead-Acid Batteries, vol. 113,
LABAT ’02, 2003, pp. 422e430, 2.

[75] F. Dion, A. Lasia, The use of regularization methods in the deconvolution of
underlying distributions in electrochemical processes, J. Electroanal. Chem.
475 (1) (1999) 28e37.

[76] J. Liu, J. Wang, A. Belotti, F. Ciucci, P-substituted Ba0.95La0.05FeO3- 3as a cathode
material for sofcs, ACS Appl. Energy Mater. 2 (8) (2019) 5472e5480.

[77] F. Ciucci, Revisiting parameter identification in electrochemical impedance
spectroscopy: weighted least squares and optimal experimental design,
Electrochim. Acta 87 (2013) 532e545.

[78] H. Nickisch, C.E. Rasmussen, Approximations for binary Gaussian process
classification, J. Mach. Learn. Res. 9 (Oct) (2008) 2035e2078.

[79] J. Riihim€aki, A. Vehtari, Gaussian processes with monotonicity information, in:
Proceedings of the Thirteenth International Conference on Artificial Intelli-
gence and Statistics, 2010, pp. 645e652.

[80] T.P. Minka, Expectation propagation for approximate bayesian inference, in:
Proceedings of the Seventeenth Conference on Uncertainty in Artificial In-
telligence, Morgan Kaufmann Publishers Inc., 2001, pp. 362e369.

[81] M. Kuss, C.E. Rasmussen, Assessing approximate inference for binary Gaussian
process classification, J. Mach. Learn. Res. 6 (Oct) (2005) 1679e1704.

[82] D. Duvenaud, J. R. Lloyd, R. Grosse, J. B. Tenenbaum, Z. Ghahramani, Structure
Discovery in Nonparametric Regression through Compositional Kernel Search,
arXiv Preprint arXiv:1302.4922.

[83] L. Ambrogioni, E. Maris, Integral Transforms from Finite Data: an Application
of Gaussian Process Regression to Fourier Analysis, arXiv Preprint arXiv:
1704.02828.

[84] A.B. Abdessalem, N. Dervilis, D.J. Wagg, K. Worden, Automatic kernel selection
for Gaussian processes regression with approximate bayesian computation
and sequential Monte Carlo, Front. Built Environ. 3 (2017) 52.

http://refhub.elsevier.com/S0013-4686(19)32188-7/sref57
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref57
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref57
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref57
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref57
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref58
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref58
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref58
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref58
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref58
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref59
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref59
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref59
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref59
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref59
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref60
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref60
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref60
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref60
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref61
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref61
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref61
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref61
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref62
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref62
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref62
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref62
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref63
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref63
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref63
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref63
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref64
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref64
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref64
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref64
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref65
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref65
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref65
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref65
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref65
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref65
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref66
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref66
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref66
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref66
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref67
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref67
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref68
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref69
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref69
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref69
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref69
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref69
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref69
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref69
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref70
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref70
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref70
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref71
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref71
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref71
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref72
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref72
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref73
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref73
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref73
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref73
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref74
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref74
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref74
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref74
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref74
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref75
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref75
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref75
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref75
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref76
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref76
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref76
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref76
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref76
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref76
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref77
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref77
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref77
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref77
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref78
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref78
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref78
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref79
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref79
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref79
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref79
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref79
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref80
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref80
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref80
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref80
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref81
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref81
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref81
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref84
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref84
http://refhub.elsevier.com/S0013-4686(19)32188-7/sref84

	The Gaussian process distribution of relaxation times: A machine learning tool for the analysis and prediction of electroch ...
	1. Introduction
	2. Theory
	2.1. Gaussian processes
	2.1.1. Basics
	2.1.2. Linear transformations of Gaussian processes

	2.2. The DRT formulation
	2.3. The GP distribution of relaxation times (GP-DRT)
	2.3.1. Basics
	2.3.2. Inversion
	2.3.3. Prediction
	2.3.4. Selecting the hyperparameters
	2.3.5. Comment

	2.4. The GP-DRT with inductance

	3. Results
	3.1. Synthetic experiments
	3.1.1. Exact impedance
	3.1.2. Qualitative considerations
	3.1.3. Hyperparameter optimization
	3.1.4. Influence of experimental errors
	3.1.5. Truncated data and prediction
	3.1.6. Overlapping frequencies
	3.1.7. Inductance

	3.2. Real experiments
	3.2.1. SOFC impedance
	3.2.2. Commercial LIB spectra


	4. Perspective and future work
	4.1. Including the real part of the data
	4.2. Positivity constraint
	4.3. Choosing the kernel

	5. Conclusions
	Code availability
	Declaration of interest statement
	Author Contributions Section
	Acknowledgements
	List of abbreviations and symbols
	Appendix A. Multivariate Gaussian Random Variables
	A.1. Marginalization
	A.2. Conditioning

	Appendix B. Matrices Used in the GP-DRT: Derivations and Properties
	B.1. LimK and Lim♯K
	B.2. Lim2K
	B.3. Lre2K

	Appendix C. Gradient of marginal log-likelihhod (MLL)
	References


